23,829 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Distributed Adaptive Fault-Tolerant Control of Uncertain Multi-Agent Systems

    Get PDF
    This paper presents an adaptive fault-tolerant control (FTC) scheme for a class of nonlinear uncertain multi-agent systems. A local FTC scheme is designed for each agent using local measurements and suitable information exchanged between neighboring agents. Each local FTC scheme consists of a fault diagnosis module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault-tolerant controllers activated after fault detection and after fault isolation, respectively. Under certain assumptions, the closed-loop system's stability and leader-follower consensus properties are rigorously established under different modes of the FTC system, including the time-period before possible fault detection, between fault detection and possible isolation, and after fault isolation

    Similarity Decomposition Approach to Oscillatory Synchronization for Multiple Mechanical Systems With a Virtual Leader

    Full text link
    This paper addresses the oscillatory synchronization problem for multiple uncertain mechanical systems with a virtual leader, and the interaction topology among them is assumed to contain a directed spanning tree. We propose an adaptive control scheme to achieve the goal of oscillatory synchronization. Using the similarity decomposition approach, we show that the position and velocity synchronization errors between each mechanical system (or follower) and the virtual leader converge to zero. The performance of the proposed adaptive scheme is shown by numerical simulation results.Comment: 15 pages, 3 figures, published in 2014 Chinese Control Conferenc
    corecore