6,956 research outputs found

    Target-Side Context for Discriminative Models in Statistical Machine Translation

    Get PDF
    Discriminative translation models utilizing source context have been shown to help statistical machine translation performance. We propose a novel extension of this work using target context information. Surprisingly, we show that this model can be efficiently integrated directly in the decoding process. Our approach scales to large training data sizes and results in consistent improvements in translation quality on four language pairs. We also provide an analysis comparing the strengths of the baseline source-context model with our extended source-context and target-context model and we show that our extension allows us to better capture morphological coherence. Our work is freely available as part of Moses.Comment: Accepted as a long paper for ACL 201

    Top-Rank Enhanced Listwise Optimization for Statistical Machine Translation

    Full text link
    Pairwise ranking methods are the basis of many widely used discriminative training approaches for structure prediction problems in natural language processing(NLP). Decomposing the problem of ranking hypotheses into pairwise comparisons enables simple and efficient solutions. However, neglecting the global ordering of the hypothesis list may hinder learning. We propose a listwise learning framework for structure prediction problems such as machine translation. Our framework directly models the entire translation list's ordering to learn parameters which may better fit the given listwise samples. Furthermore, we propose top-rank enhanced loss functions, which are more sensitive to ranking errors at higher positions. Experiments on a large-scale Chinese-English translation task show that both our listwise learning framework and top-rank enhanced listwise losses lead to significant improvements in translation quality.Comment: Accepted to CONLL 201

    Highly Efficient Regression for Scalable Person Re-Identification

    Full text link
    Existing person re-identification models are poor for scaling up to large data required in real-world applications due to: (1) Complexity: They employ complex models for optimal performance resulting in high computational cost for training at a large scale; (2) Inadaptability: Once trained, they are unsuitable for incremental update to incorporate any new data available. This work proposes a truly scalable solution to re-id by addressing both problems. Specifically, a Highly Efficient Regression (HER) model is formulated by embedding the Fisher's criterion to a ridge regression model for very fast re-id model learning with scalable memory/storage usage. Importantly, this new HER model supports faster than real-time incremental model updates therefore making real-time active learning feasible in re-id with human-in-the-loop. Extensive experiments show that such a simple and fast model not only outperforms notably the state-of-the-art re-id methods, but also is more scalable to large data with additional benefits to active learning for reducing human labelling effort in re-id deployment

    Domain Adaptation for Statistical Classifiers

    Full text link
    The most basic assumption used in statistical learning theory is that training data and test data are drawn from the same underlying distribution. Unfortunately, in many applications, the "in-domain" test data is drawn from a distribution that is related, but not identical, to the "out-of-domain" distribution of the training data. We consider the common case in which labeled out-of-domain data is plentiful, but labeled in-domain data is scarce. We introduce a statistical formulation of this problem in terms of a simple mixture model and present an instantiation of this framework to maximum entropy classifiers and their linear chain counterparts. We present efficient inference algorithms for this special case based on the technique of conditional expectation maximization. Our experimental results show that our approach leads to improved performance on three real world tasks on four different data sets from the natural language processing domain

    A Survey of Word Reordering in Statistical Machine Translation: Computational Models and Language Phenomena

    Get PDF
    Word reordering is one of the most difficult aspects of statistical machine translation (SMT), and an important factor of its quality and efficiency. Despite the vast amount of research published to date, the interest of the community in this problem has not decreased, and no single method appears to be strongly dominant across language pairs. Instead, the choice of the optimal approach for a new translation task still seems to be mostly driven by empirical trials. To orientate the reader in this vast and complex research area, we present a comprehensive survey of word reordering viewed as a statistical modeling challenge and as a natural language phenomenon. The survey describes in detail how word reordering is modeled within different string-based and tree-based SMT frameworks and as a stand-alone task, including systematic overviews of the literature in advanced reordering modeling. We then question why some approaches are more successful than others in different language pairs. We argue that, besides measuring the amount of reordering, it is important to understand which kinds of reordering occur in a given language pair. To this end, we conduct a qualitative analysis of word reordering phenomena in a diverse sample of language pairs, based on a large collection of linguistic knowledge. Empirical results in the SMT literature are shown to support the hypothesis that a few linguistic facts can be very useful to anticipate the reordering characteristics of a language pair and to select the SMT framework that best suits them.Comment: 44 pages, to appear in Computational Linguistic

    A Deep-structured Conditional Random Field Model for Object Silhouette Tracking

    Full text link
    In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering.Comment: 17 page
    • …
    corecore