5 research outputs found

    A directed isoperimetric inequality with application to Bregman near neighbor lower bounds

    Full text link
    Bregman divergences DϕD_\phi are a class of divergences parametrized by a convex function ϕ\phi and include well known distance functions like 22\ell_2^2 and the Kullback-Leibler divergence. There has been extensive research on algorithms for problems like clustering and near neighbor search with respect to Bregman divergences, in all cases, the algorithms depend not just on the data size nn and dimensionality dd, but also on a structure constant μ1\mu \ge 1 that depends solely on ϕ\phi and can grow without bound independently. In this paper, we provide the first evidence that this dependence on μ\mu might be intrinsic. We focus on the problem of approximate near neighbor search for Bregman divergences. We show that under the cell probe model, any non-adaptive data structure (like locality-sensitive hashing) for cc-approximate near-neighbor search that admits rr probes must use space Ω(n1+μcr)\Omega(n^{1 + \frac{\mu}{c r}}). In contrast, for LSH under 1\ell_1 the best bound is Ω(n1+1cr)\Omega(n^{1+\frac{1}{cr}}). Our new tool is a directed variant of the standard boolean noise operator. We show that a generalization of the Bonami-Beckner hypercontractivity inequality exists "in expectation" or upon restriction to certain subsets of the Hamming cube, and that this is sufficient to prove the desired isoperimetric inequality that we use in our data structure lower bound. We also present a structural result reducing the Hamming cube to a Bregman cube. This structure allows us to obtain lower bounds for problems under Bregman divergences from their 1\ell_1 analog. In particular, we get a (weaker) lower bound for approximate near neighbor search of the form Ω(n1+1cr)\Omega(n^{1 + \frac{1}{cr}}) for an rr-query non-adaptive data structure, and new cell probe lower bounds for a number of other near neighbor questions in Bregman space.Comment: 27 page

    Approximate Near Neighbors for General Symmetric Norms

    Full text link
    We show that every symmetric normed space admits an efficient nearest neighbor search data structure with doubly-logarithmic approximation. Specifically, for every nn, d=no(1)d = n^{o(1)}, and every dd-dimensional symmetric norm \|\cdot\|, there exists a data structure for poly(loglogn)\mathrm{poly}(\log \log n)-approximate nearest neighbor search over \|\cdot\| for nn-point datasets achieving no(1)n^{o(1)} query time and n1+o(1)n^{1+o(1)} space. The main technical ingredient of the algorithm is a low-distortion embedding of a symmetric norm into a low-dimensional iterated product of top-kk norms. We also show that our techniques cannot be extended to general norms.Comment: 27 pages, 1 figur

    Lower Bounds on Time-Space Trade-Offs for Approximate Near Neighbors

    Get PDF
    We show tight lower bounds for the entire trade-off between space and query time for the Approximate Near Neighbor search problem. Our lower bounds hold in a restricted model of computation, which captures all hashing-based approaches. In articular, our lower bound matches the upper bound recently shown in [Laarhoven 2015] for the random instance on a Euclidean sphere (which we show in fact extends to the entire space Rd\mathbb{R}^d using the techniques from [Andoni, Razenshteyn 2015]). We also show tight, unconditional cell-probe lower bounds for one and two probes, improving upon the best known bounds from [Panigrahy, Talwar, Wieder 2010]. In particular, this is the first space lower bound (for any static data structure) for two probes which is not polynomially smaller than for one probe. To show the result for two probes, we establish and exploit a connection to locally-decodable codes.Comment: 47 pages, 2 figures; v2: substantially revised introduction, lots of small corrections; subsumed by arXiv:1608.03580 [cs.DS] (along with arXiv:1511.07527 [cs.DS]

    Optimal Hashing-based Time-Space Trade-offs for Approximate Near Neighbors

    Get PDF
    [See the paper for the full abstract.] We show tight upper and lower bounds for time-space trade-offs for the cc-Approximate Near Neighbor Search problem. For the dd-dimensional Euclidean space and nn-point datasets, we develop a data structure with space n1+ρu+o(1)+O(dn)n^{1 + \rho_u + o(1)} + O(dn) and query time nρq+o(1)+dno(1)n^{\rho_q + o(1)} + d n^{o(1)} for every ρu,ρq0\rho_u, \rho_q \geq 0 such that: \begin{equation} c^2 \sqrt{\rho_q} + (c^2 - 1) \sqrt{\rho_u} = \sqrt{2c^2 - 1}. \end{equation} This is the first data structure that achieves sublinear query time and near-linear space for every approximation factor c>1c > 1, improving upon [Kapralov, PODS 2015]. The data structure is a culmination of a long line of work on the problem for all space regimes; it builds on Spherical Locality-Sensitive Filtering [Becker, Ducas, Gama, Laarhoven, SODA 2016] and data-dependent hashing [Andoni, Indyk, Nguyen, Razenshteyn, SODA 2014] [Andoni, Razenshteyn, STOC 2015]. Our matching lower bounds are of two types: conditional and unconditional. First, we prove tightness of the whole above trade-off in a restricted model of computation, which captures all known hashing-based approaches. We then show unconditional cell-probe lower bounds for one and two probes that match the above trade-off for ρq=0\rho_q = 0, improving upon the best known lower bounds from [Panigrahy, Talwar, Wieder, FOCS 2010]. In particular, this is the first space lower bound (for any static data structure) for two probes which is not polynomially smaller than the one-probe bound. To show the result for two probes, we establish and exploit a connection to locally-decodable codes.Comment: 62 pages, 5 figures; a merger of arXiv:1511.07527 [cs.DS] and arXiv:1605.02701 [cs.DS], which subsumes both of the preprints. New version contains more elaborated proofs and fixed some typo

    Global hypercontractivity and its applications

    Get PDF
    The hypercontractive inequality on the discrete cube plays a crucial role in many fundamental results in the Analysis of Boolean functions, such as the KKL theorem, Friedgut's junta theorem and the invariance principle. In these results the cube is equipped with the uniform measure, but it is desirable, particularly for applications to the theory of sharp thresholds, to also obtain such results for general pp-biased measures. However, simple examples show that when p=o(1)p = o(1), there is no hypercontractive inequality that is strong enough. In this paper, we establish an effective hypercontractive inequality for general pp that applies to `global functions', i.e. functions that are not significantly affected by a restriction of a small set of coordinates. This class of functions appears naturally, e.g. in Bourgain's sharp threshold theorem, which states that such functions exhibit a sharp threshold. We demonstrate the power of our tool by strengthening Bourgain's theorem, thereby making progress on a conjecture of Kahn and Kalai and by establishing a pp-biased analog of the invariance principle. Our results have significant applications in Extremal Combinatorics. Here we obtain new results on the Tur\'an number of any bounded degree uniform hypergraph obtained as the expansion of a hypergraph of bounded uniformity. These are asymptotically sharp over an essentially optimal regime for both the uniformity and the number of edges and solve a number of open problems in the area. In particular, we give general conditions under which the crosscut parameter asymptotically determines the Tur\'an number, answering a question of Mubayi and Verstra\"ete. We also apply the Junta Method to refine our asymptotic results and obtain several exact results, including proofs of the Huang--Loh--Sudakov conjecture on cross matchings and the F\"uredi--Jiang--Seiver conjecture on path expansions.Comment: Subsumes arXiv:1906.0556
    corecore