46 research outputs found

    High linearity analog and mixed-signal integrated circuit design

    Get PDF
    Linearity is one of the most important specifications in electrical circuits.;In Chapter 1, a ladder-based transconductance networks has been adopted first time to build a low distortion analog filters for low frequency applications. This new technique eliminated the limitation of the application with the traditional passive resistors for low frequency applications. Based on the understanding of this relationship, a strategy for designing high linear analog continuous-time filters has been developed. According to our strategy, a prototype analog integrated filter has been designed and fabricated with AMI05 0.5 um standard CMOS process. Experimental results proved this technique has the ability to provide excellent linearity with very limited active area.;In Chapter 2, the relationships between the transconductance networks and major circuit specifications have been explored. The analysis reveals the trade off between the silicon area saved by the transconductance networks and the some other important specifications such as linearity, noise level and the process variations of the overall circuit. Experimental results of discrete component circuit matched very well with our analytical outcomes to predict the change of linearity and noise performance associated with different transconductance networks.;The Chapter 3 contains the analysis and mathematical proves of the optimum passive area allocations for several most popular analog active filters. Because the total area is now manageable by the technique introduced in the Chapter 1, the further reduce of the total area will be very important and useful for efficient utilizing the silicon area, especially with the today\u27s fast growing area efficiency of the highly density digital circuits. This study presents the mathematical conclusion that the minimum passive area will be achieved with the equalized resistor and capacitor.;In the Chapter 4, a well recognized and highly honored current division circuit has been studied. Although it was claimed to be inherently linear and there are over 60 published works reported with high linearity based on this technique, our study discovered that this current division circuit can achieve, if proper circuit condition being managed, very limited linearity and all the experimental verified performance actually based on more general circuit principle. Besides its limitation, however, we invented a novel current division digital to analog converter (DAC) based on this technique. Benefiting from the simple circuit structure and moderate good linearity, a prototype 8-bit DAC was designed in TSMC018 0.2 um CMOS process and the post layout simulations exhibited the good linearity with very low power consumption and extreme small active area.;As the part of study of the output stage for the current division DAC discussed in the Chapter 4, a current mirror is expected to amplify the output current to drive the low resistive load. The strategy of achieving the optimum bandwidth of the cascode current mirror with fixed total current gain is discussed in the Chapter 5.;Improving the linearity of pipeline ADC has been the hottest and hardest topic in solid-state circuit community for decade. In the Chapter 6, a comprehensive study focus on the existing calibration algorithms for pipeline ADCs is presented. The benefits and limitations of different calibration algorithms have been discussed. Based on the understanding of those reported works, a new model-based calibration is delivered. The simulation results demonstrate that the model-based algorithms are vulnerable to the model accuracy and this weakness is very hard to be removed. From there, we predict the future developments of calibration algorithms that can break the linearity limitations for pipelined ADC. (Abstract shortened by UMI.

    Low Power CMOS Interface Circuitry for Sensors and Actuators

    Get PDF

    Multi-Stage Noise-Shaping Continuous-Time Sigma-Delta Modulator

    Get PDF
    The design of a single-loop continuous-time ∑∆ modulator (CT∑∆M) with high resolution, wide bandwidth, and low power consumption is very challenging. The multi-stage noise-shaping (MASH) CT∑∆M architecture is identified as an advancement to the single-loop CT∑∆M architecture in order to satisfy the ever stringent requirements of next generation wireless systems. However, it suffers from the problems of quantization noise leakage and non-ideal interstage interfacing which hinder its widespread adoption. To solve these issues, this dissertation proposes a MASH CT∑∆M with on-chip RC time constant calibration circuits, multiple feedforward interstage paths, and a fully integrated noise cancellation filter (NCF). The prototype core modulator architecture is a cascade of two single-loop second- order CT∑∆M stages, each of which consists of an integrator-based active-RC loop filter, current-steering feedback digital-to-analog converters, and a four-bit flash quantizer. On-chip RC time constant calibration circuits and high gain multi-stage operational amplifiers are realized to mitigate quantization noise leakage due to process variation. Multiple feedforward interstage paths are introduced to (i) synthesize a fourth-order noise transfer function with DC zeros, (ii) simplify the design of NCF, and (iii) reduce signal swings at the second-stage integrator outputs. Fully integrated in 40 nm CMOS, the prototype chip achieves 74.4 dB of signal-to-noise and distortion ratio (SNDR), 75.8 dB of signal-to-noise ratio, and 76.8 dB of dynamic range in 50.3 MHz of bandwidth (BW) at 1 GHz of sampling frequency with 43.0 mW of power consumption (P). It does not require external software calibration and possesses minimal out-of-band signal transfer function peaking. The figure-of-merit (FOM), defined as FOM = SNDR + 10 log10(BW/P), is 165.1 dB

    Continuous-time low-pass filters for integrated wideband radio receivers

    Get PDF
    This thesis concentrates on the design and implementation of analog baseband continuous-time low-pass filters for integrated wideband radio receivers. A total of five experimental analog baseband low-pass filter circuits were designed and implemented as a part of five single-chip radio receivers in this work. After the motivation for the research work presented in this thesis has been introduced, an overview of analog baseband filters in radio receivers is given first. In addition, a review of the three receiver architectures and the three wireless applications that are adopted in the experimental work of this thesis is presented. The relationship between the integrator non-idealities and integrator Q-factor, as well as the effect of the integrator Q-factor on the filter frequency response, are thoroughly studied on the basis of a literature review. The theoretical study that is provided is essential for the gm-C filter synthesis with non-ideal lossy integrators that is presented after the introduction of different techniques to realize integrator-based continuous-time low-pass filters. The filter design approach proposed for gm-C filters is original work and one of the main points in this thesis, in addition to the experimental IC implementations. Two evolution versions of fourth-order 10-MHz opamp-RC low-pass filters designed and implemented for two multicarrier WCDMA base-station receivers in a 0.25-µm SiGe BiCMOS technology are presented, along with the experimental results of both the low-pass filters and the corresponding radio receivers. The circuit techniques that were used in the three gm-C filter implementations of this work are described and a common-mode induced even-order distortion in a pseudo-differential filter is analyzed. Two evolution versions of fifth-order 240-MHz gm-C low-pass filters that were designed and implemented for two single-chip WiMedia UWB direct-conversion receivers in a standard 0.13-µm and 65-nm CMOS technology, respectively, are presented, along with the experimental results of both the low-pass filters and the second receiver version. The second UWB filter design was also embedded with an ADC into the baseband of a 60-GHz 65-nm CMOS radio receiver. In addition, a third-order 1-GHz gm-C low-pass filter was designed, rather as a test structure, for the same receiver. The experimental results of the receiver and the third gm-C filter implementation are presented

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Analog baseband circuits for WCDMA direct-conversion receivers

    Get PDF
    This thesis describes the design and implementation of analog baseband circuits for low-power single-chip WCDMA direct-conversion receivers. The reference radio system throughout the thesis is UTRA/FDD. The analog baseband circuit consists of two similar channels, which contain analog channel-select filters, programmable-gain amplifiers, and circuits that remove DC offsets. The direct-conversion architecture is described and the UTRA/FDD system characteristics are summarized. The UTRA/FDD specifications define the performance requirement for the whole receiver. Therefore, the specifications for the analog baseband circuit are obtained from the receiver requirements through calculations performed by hand. When the power dissipation of an UTRA/FDD direct-conversion receiver is minimized, the design parameters of an all-pole analog channel-select filter and the following Nyquist rate analog-to-digital converter must be considered simultaneously. In this thesis, it is shown that minimum power consumption is achieved with a fifth-order lowpass filter and a 15.36-MS/s Nyquist rate converter that has a 7- or 8-bit resolution. A fifth-order Chebyshev prototype with a passband ripple of 0.01 dB and a −3-dB frequency of 1.92-MHz is adopted in this thesis. The error-vector-magnitude can be significantly reduced by using a first-order 1.4-MHz allpass filter. The selected filter prototype fulfills all selectivity requirements in the analog domain. In this thesis, all the filter implementations use the opamp-RC technique to achieve insensitivity to parasitic capacitances and a high dynamic range. The adopted technique is analyzed in detail. The effect of the finite opamp unity-gain bandwidth on the filter frequency response can be compensated for by using passive methods. Compensation schemes that also track the process and temperature variations have been developed. The opamp-RC technique enables the implementation of low-voltage filters. The design and simulation results of a 1.5-V 2-MHz lowpass filter are discussed. The developed biasing scheme does not use any additional current to achieve the low-voltage operation, unlike the filter topology published previously elsewhere. Methods for removing DC offsets in UTRA/FDD direct-conversion receivers are presented. The minimum areas for cascaded AC couplings and DC-feedback loops are calculated. The distortion of the frequency response of a lowpass filter caused by a DC-feedback loop connected over the filter is calculated and a method for compensating for the distortion is developed. The time constant of an AC coupling can be increased using time-constant multipliers. This enables the implementation of AC couplings with a small silicon area. Novel time-constant multipliers suitable for systems that have a continuous reception, such as UTRA/FDD, are presented. The proposed time-constant multipliers only require one additional amplifier. In an UTRA/FDD direct-conversion receiver, the reception is continuous. In a low-power receiver, the programmable baseband gain must be changed during reception. This may produce large, slowly decaying transients that degrade the receiver performance. The thesis shows that AC-coupling networks and DC-feedback loops can be used to implement programmable-gain amplifiers, which do not produce significant transients when the gain is altered. The principles of operation, the design, and the practical implementation issues of these amplifiers are discussed. New PGA topologies suitable for continuously receiving systems have been developed. The behavior of these circuits in the presence of strong out-of-channel signals is analyzed. The interface between the downconversion mixers and the analog baseband circuit is discussed. The effect of the interface on the receiver noise figure and the trimming of mixer IIP2 are analyzed. The design and implementation of analog baseband circuits and channel-select filters for UTRA/FDD direct-conversion receivers are discussed in five application cases. The first case presents the analog baseband circuit for a chip-set receiver. A channel-select filter that has an improved dynamic range with a smaller supply current is presented next. The third and fifth application cases describe embedded analog baseband circuits for single-chip receivers. In the fifth case, the dual-mode analog baseband circuit of a quad-mode receiver designed for GSM900, DCS1800, PCS1900, and UTRA/FDD cellular systems is described. A new, highly linear low-power transconductor is presented in the fourth application case. The fourth application case also describes a channel-select filter. The filter achieves +99-dBV out-of-channel IIP2, +45-dBV out-of-channel IIP3 and 23-μVRMS input-referred noise with 2.6-mA current from a 2.7-V supply. In the fifth application case, a corresponding performance is achieved in UTRA/FDD mode. The out-of-channel IIP2 values of approximately +100 dBV achieved in this work are the best reported so far. This is also the case with the figure of merits for the analog channel-select filter and analog baseband circuit described in the fourth and fifth application cases, respectively. For equal power dissipation, bandwidth, and filter order, these circuits achieve approximately 10 dB and 15 dB higher spurious-free dynamic ranges, respectively, when compared to implementations that are published elsewhere and have the second best figure of merits.reviewe

    Subsampling receivers with applications to software defined radio systems

    Get PDF
    Este trabajo de tesis propone la utilización sistemas basados en submuestreo como una alternativa para la implementación de la etapa de down-conversion de los receptores de radio frecuencia (RF) empleados para aplicaciones multi-estándar y SDR (Software Defined Radio). El objetivo principal será el de optimizar el diseño en cuanto a flexibilidad y simplicidad, las cuales son propiedades inherentes en los sistemas basados en submuestreo. Por tanto, como reducir el número de componentes al mínimo es clave cuando un mismo receptor procesa diferentes estándares de comunicación, las arquitecturas basadas en submuestreo han sido seleccionadas, donde la reusabilidad de los componentes empleados es posible, así como la reducción de los costes totales de los receptores de comunicación y de los equipos de certificación que emplean estas arquitecturas. Un motivo adicional por el que los sistemas basados en submuestreo han sido seleccionados es el concerniente a la topología del receptor. Como la idea de la tecnología SDR es implementar todas las funcionalidades del receptor (filtrado, amplificación) en el dominio digital, el convertidores analógico-digital (ADC) deberá estar localizado en la cadena de recepción lo más cerca posible a la antena, siendo el objetivo final el convertir la señal directamente de RF a digital. Sin embargo, con los actuales ADC no es posible implementar esta idea debido al alto ancho de banda que necesitarían sin perder resolución para cubrir las especificaciones de los estándares de comunicaciones inalámbricas. Por tanto, los sistemas basados en submuestreo se presentan como la opción más adecuada para implementar este tipo de sistemas debido a que pueden muestrear la señal de entrada por debajo de la tasa de Nyquist, si se cumplen ciertas restricciones en cuanto a la elección de la frecuencia de muestreo. De este modo, los requerimientos del ADC serán relajados ya que, usando estas arquitecturas, este componente procesará la señal a frecuencias intermedias. Una vez se han introducido los conceptos principales de las técnicas de submuestreo, esta tesis doctoral presenta el diseño de una tarjeta de adquisición de datos basada en submuestreo con la finalidad de ser implementada como un receptor de test y certificación de banda ancha. El sistema propuesto proporciona una alta resolución para un elevado ancho de banda, a partir del uso de un S&H de bajo jitter y de un convertidor analógico digital ADC que trabaja a frecuencias intermedias. El sistema es implementado usando dispositivos comerciales en una placa de circuito impreso diseñada y fabricada, y cuya caracterización experimental muestra una resolución de más 8 bits para un ancho de banda analógico de 20 MHz. Concretamente, la resolución medida será mayor de 9 bits hasta una frecuencia de entrada de 2.9 GHz y mayor de 8 bits para una frecuencia de entrada de hasta 6.5 GHz, lo cual resulta suficiente para cubrir los requerimientos de la mayor parte de los actuales estándares de comunicaciones inalámbricas (GPS, GSM, GPRS, UMTS, Bluetooth, Wi-Fi, WiMAX). Sin embargo, los receptores basados en submuestreo presentan algunos importantes inconvenientes, como son adicionales fuentes de ruido (jitter y plegado de ruido térmico) y una dificultad añadida para implementarlo en escenarios multi-banda y no lineales. Acerca del plegado de ruido en la banda de interés, esta tesis propone el uso de una técnica basada en una arquitectura de reloj múltiple con el objetivo de aumentar la resolución y cubrir un número mayor de estándares para su test y certificación. Empleando una frecuencia de muestreo mayor para el caso del S&H, se conseguirá reducir este efecto, aumentando la resolución en aproximadamente 0.5-1 bit respecto al caso de sólo usar una fuente de reloj. Las expresiones teóricas de esta mejora son desarrolladas y presentadas en esta tesis, siendo posteriormente corroboradas de modo experimental. Por otra parte, esta tesis también propone novedosas técnicas para la aplicación de estos sistemas de submuestreo en entornos multi-banda y no lineales, los cuales presentan desafíos adicionales por el hecho de existir la posibilidad de solapamiento entre la señal de interés y los otros canales de comunicación, así como de solapamiento con sus armónicos. De este modo, esta tesis extiende el uso de los sistemas basados en submuestreo para este tipo de entornos, proponiendo técnicas para la elección de la frecuencia óptima de muestreo que evitan el solapamiento entre señales, a la vez que consiguen incrementar la resolución del receptor. Finalmente, se presentará la optimización en cuanto a características de ruido de un receptor concreto para aplicaciones de banda dual en entornos no lineales. Dicho receptor estará basado en las técnicas de reloj múltiple presentadas anteriormente y en una estructura de multi-filtro entre el S&H y el ADC. El sistema diseñado podrá emplearse para diversas aplicaciones a ambos lados de la cadena de comunicación, tal como en receptores de detección de espectro para radio cognitiva, o implementando el bucle de realimentación de un transmisor para la linealización de amplificadores de potencia. Por tanto, la presente tesis doctoral cuenta con tres contribuciones diferenciadas. La primera de ellas es la dedicada al diseño de un prototipo de recepción multi-estándar basado en submuestreo para aplicaciones de test y certificación. La segunda aportación es la dedicada a la optimización de las especificaciones de ruido a partir de las técnicas presentadas basadas en reloj múltiple. Por último, la tercera contribución principal es la relacionada con la extensión de este tipo de técnicas a sistemas multi-banda en entornos no lineales. Todas estas contribuciones han sido estudiadas teóricamente y experimentalmente validadas
    corecore