3,207 research outputs found

    Optimal Riemannian quantization with an application to air traffic analysis

    Full text link
    The goal of optimal quantization is to find the best approximation of a probability distribution by a discrete measure with finite support. When dealing with empirical distributions, this boils down to finding the best summary of the data by a smaller number of points, and automatically yields a K-means-type clustering. In this paper, we introduce Competitive Learning Riemannian Quantization (CLRQ), an online algorithm that computes the optimal summary when the data does not belong to a vector space, but rather a Riemannian manifold. We prove its convergence and show simulated examples on the sphere and the hyperbolic plane. We also provide an application to real data by using CLRQ to create summaries of images of covariance matrices estimated from air traffic images. These summaries are representative of the air traffic complexity and yield clusterings of the airspaces into zones that are homogeneous with respect to that criterion. They can then be compared using discrete optimal transport and be further used as inputs of a machine learning algorithm or as indexes in a traffic database

    Poincar\'e Wasserstein Autoencoder

    Full text link
    This work presents a reformulation of the recently proposed Wasserstein autoencoder framework on a non-Euclidean manifold, the Poincar\'e ball model of the hyperbolic space. By assuming the latent space to be hyperbolic, we can use its intrinsic hierarchy to impose structure on the learned latent space representations. We demonstrate the model in the visual domain to analyze some of its properties and show competitive results on a graph link prediction task

    A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning

    Full text link
    Hyperbolic space is a geometry that is known to be well-suited for representation learning of data with an underlying hierarchical structure. In this paper, we present a novel hyperbolic distribution called \textit{pseudo-hyperbolic Gaussian}, a Gaussian-like distribution on hyperbolic space whose density can be evaluated analytically and differentiated with respect to the parameters. Our distribution enables the gradient-based learning of the probabilistic models on hyperbolic space that could never have been considered before. Also, we can sample from this hyperbolic probability distribution without resorting to auxiliary means like rejection sampling. As applications of our distribution, we develop a hyperbolic-analog of variational autoencoder and a method of probabilistic word embedding on hyperbolic space. We demonstrate the efficacy of our distribution on various datasets including MNIST, Atari 2600 Breakout, and WordNet.Comment: 20 pages, 12 figure

    A VEST of the Pseudoinverse Learning Algorithm

    Full text link
    In this paper, we briefly review the basic scheme of the pseudoinverse learning (PIL) algorithm and present some discussions on the PIL, as well as its variants. The PIL algorithm, first presented in 1995, is a non-gradient descent and non-iterative learning algorithm for multi-layer neural networks and has several advantages compared with gradient descent based algorithms. Some new viewpoints to PIL algorithm are presented, and several common pitfalls in practical implementation of the neural network learning task are also addressed. In addition, we show that so called extreme learning machine is a Variant crEated by Simple name alTernation (VEST) of the PIL algorithm for single hidden layer feedforward neural networks.Comment: ELM is another name of the PI

    Poincar\'e Embeddings for Learning Hierarchical Representations

    Full text link
    Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically learn embeddings in Euclidean vector spaces, which do not account for this property. For this purpose, we introduce a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincar\'e ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincar\'e embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability

    Gaussian Process Neurons Learn Stochastic Activation Functions

    Full text link
    We propose stochastic, non-parametric activation functions that are fully learnable and individual to each neuron. Complexity and the risk of overfitting are controlled by placing a Gaussian process prior over these functions. The result is the Gaussian process neuron, a probabilistic unit that can be used as the basic building block for probabilistic graphical models that resemble the structure of neural networks. The proposed model can intrinsically handle uncertainties in its inputs and self-estimate the confidence of its predictions. Using variational Bayesian inference and the central limit theorem, a fully deterministic loss function is derived, allowing it to be trained as efficiently as a conventional neural network using mini-batch gradient descent. The posterior distribution of activation functions is inferred from the training data alongside the weights of the network. The proposed model favorably compares to deep Gaussian processes, both in model complexity and efficiency of inference. It can be directly applied to recurrent or convolutional network structures, allowing its use in audio and image processing tasks. As an preliminary empirical evaluation we present experiments on regression and classification tasks, in which our model achieves performance comparable to or better than a Dropout regularized neural network with a fixed activation function. Experiments are ongoing and results will be added as they become available

    Global Guarantees for Blind Demodulation with Generative Priors

    Full text link
    We study a deep learning inspired formulation for the blind demodulation problem, which is the task of recovering two unknown vectors from their entrywise multiplication. We consider the case where the unknown vectors are in the range of known deep generative models, G(1):Rn→Rℓ\mathcal{G}^{(1)}:\mathbb{R}^n\rightarrow\mathbb{R}^\ell and G(2):Rp→Rℓ\mathcal{G}^{(2)}:\mathbb{R}^p\rightarrow\mathbb{R}^\ell. In the case when the networks corresponding to the generative models are expansive, the weight matrices are random and the dimension of the unknown vectors satisfy ℓ=Ω(n2+p2)\ell = \Omega(n^2+p^2), up to log factors, we show that the empirical risk objective has a favorable landscape for optimization. That is, the objective function has a descent direction at every point outside of a small neighborhood around four hyperbolic curves. We also characterize the local maximizers of the empirical risk objective and, hence, show that there does not exist any other stationary points outside of these neighborhood around four hyperbolic curves and the set of local maximizers. We also implement a gradient descent scheme inspired by the geometry of the landscape of the objective function. In order to converge to a global minimizer, this gradient descent scheme exploits the fact that exactly one of the hyperbolic curve corresponds to the global minimizer, and thus points near this hyperbolic curve have a lower objective value than points close to the other spurious hyperbolic curves. We show that this gradient descent scheme can effectively remove distortions synthetically introduced to the MNIST dataset

    Wrapped Distributions on homogeneous Riemannian manifolds

    Full text link
    We provide a general framework for constructing probability distributions on Riemannian manifolds, taking advantage of area-preserving maps and isometries. Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions that are straightforward to sample from, suitable for use within Monte Carlo algorithms and latent variable models, such as autoencoders. As an illustration, we empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model. Finally, we take advantage of the generalized description of this framework to posit questions for future work.Comment: 34 pages, 9 figures. arXiv admin note: text overlap with arXiv:1804.00891 by other author

    First-order Methods for Geodesically Convex Optimization

    Full text link
    Geodesic convexity generalizes the notion of (vector space) convexity to nonlinear metric spaces. But unlike convex optimization, geodesically convex (g-convex) optimization is much less developed. In this paper we contribute to the understanding of g-convex optimization by developing iteration complexity analysis for several first-order algorithms on Hadamard manifolds. Specifically, we prove upper bounds for the global complexity of deterministic and stochastic (sub)gradient methods for optimizing smooth and nonsmooth g-convex functions, both with and without strong g-convexity. Our analysis also reveals how the manifold geometry, especially \emph{sectional curvature}, impacts convergence rates. To the best of our knowledge, our work is the first to provide global complexity analysis for first-order algorithms for general g-convex optimization.Comment: 21 page

    Constructing the Matrix Multilayer Perceptron and its Application to the VAE

    Full text link
    Like most learning algorithms, the multilayer perceptrons (MLP) is designed to learn a vector of parameters from data. However, in certain scenarios we are interested in learning structured parameters (predictions) in the form of symmetric positive definite matrices. Here, we introduce a variant of the MLP, referred to as the matrix MLP, that is specialized at learning symmetric positive definite matrices. We also present an application of the model within the context of the variational autoencoder (VAE). Our formulation of the VAE extends the vanilla formulation to the cases where the recognition and the generative networks can be from the parametric family of distributions with dense covariance matrices. Two specific examples are discussed in more detail: the dense covariance Gaussian and its generalization, the power exponential distribution. Our new developments are illustrated using both synthetic and real data
    • …
    corecore