3 research outputs found

    Towards Segmenting Anything That Moves

    Full text link
    Detecting and segmenting individual objects, regardless of their category, is crucial for many applications such as action detection or robotic interaction. While this problem has been well-studied under the classic formulation of spatio-temporal grouping, state-of-the-art approaches do not make use of learning-based methods. To bridge this gap, we propose a simple learning-based approach for spatio-temporal grouping. Our approach leverages motion cues from optical flow as a bottom-up signal for separating objects from each other. Motion cues are then combined with appearance cues that provide a generic objectness prior for capturing the full extent of objects. We show that our approach outperforms all prior work on the benchmark FBMS dataset. One potential worry with learning-based methods is that they might overfit to the particular type of objects that they have been trained on. To address this concern, we propose two new benchmarks for generic, moving object detection, and show that our model matches top-down methods on common categories, while significantly out-performing both top-down and bottom-up methods on never-before-seen categories.Comment: Website: http://www.achaldave.com/projects/anything-that-moves/. Code: https://github.com/achalddave/segment-any-movin

    Betrayed by Motion: Camouflaged Object Discovery via Motion Segmentation

    Full text link
    The objective of this paper is to design a computational architecture that discovers camouflaged objects in videos, specifically by exploiting motion information to perform object segmentation. We make the following three contributions: (i) We propose a novel architecture that consists of two essential components for breaking camouflage, namely, a differentiable registration module to align consecutive frames based on the background, which effectively emphasises the object boundary in the difference image, and a motion segmentation module with memory that discovers the moving objects, while maintaining the object permanence even when motion is absent at some point. (ii) We collect the first large-scale Moving Camouflaged Animals (MoCA) video dataset, which consists of over 140 clips across a diverse range of animals (67 categories). (iii) We demonstrate the effectiveness of the proposed model on MoCA, and achieve competitive performance on the unsupervised segmentation protocol on DAVIS2016 by only relying on motion.Comment: ACCV 202

    Object Discovery in Videos as Foreground Motion Clustering

    Full text link
    We consider the problem of providing dense segmentation masks for object discovery in videos. We formulate the object discovery problem as foreground motion clustering, where the goal is to cluster foreground pixels in videos into different objects. We introduce a novel pixel-trajectory recurrent neural network that learns feature embeddings of foreground pixel trajectories linked across time. By clustering the pixel trajectories using the learned feature embeddings, our method establishes correspondences between foreground object masks across video frames. To demonstrate the effectiveness of our framework for object discovery, we conduct experiments on commonly used datasets for motion segmentation, where we achieve state-of-the-art performance
    corecore