227 research outputs found

    Algorithms in computer-aided design of VLSI circuits.

    Get PDF
    With the increased complexity of Very Large Scale Integrated (VLSI) circuits,Computer Aided Design (CAD) plays an even more important role. Top-downdesign methodology and layout of VLSI are reviewed. Moreover, previouslypublished algorithms in CAD of VLSI design are outlined.In certain applications, Reed-Muller (RM) forms when implemented withAND/XOR or OR/XNOR logic have shown some attractive advantages overthe standard Boolean logic based on AND/OR logic. The RM forms implementedwith OR/XNOR logic, known as Dual Forms of Reed-Muller (DFRM),is the Dual form of traditional RM implemented with AND /XOR.Map folding and transformation techniques are presented for the conversionbetween standard Boolean and DFRM expansions of any polarity. Bidirectionalmulti-segment computer based conversion algorithms are also proposedfor large functions based on the concept of Boolean polarity for canonicalproduct-of-sums Boolean functions. Furthermore, another two tabular basedconversion algorithms, serial and parallel tabular techniques, are presented forthe conversion of large functions between standard Boolean and DFRM expansionsof any polarity. The algorithms were tested for examples of up to 25variables using the MCNC and IWLS'93 benchmarks.Any n-variable Boolean function can be expressed by a Fixed PolarityReed-Muller (FPRM) form. In order to have a compact Multi-level MPRM(MMPRM) expansion, a method called on-set table method is developed.The method derives MMPRM expansions directly from FPRM expansions.If searching all polarities of FPRM expansions, the MMPRM expansions withthe least number of literals can be obtained. As a result, it is possible to findthe best polarity expansion among 2n FPRM expansions instead of searching2n2n-1 MPRM expansions within reasonable time for large functions. Furthermore,it uses on-set coefficients only and hence reduces the usage of memorydramatically.Currently, XOR and XNOR gates can be implemented into Look-Up Tables(LUT) of Field Programmable Gate Arrays (FPGAs). However, FPGAplacement is categorised to be NP-complete. Efficient placement algorithmsare very important to CAD design tools. Two algorithms based on GeneticAlgorithm (GA) and GA with Simulated Annealing (SA) are presented for theplacement of symmetrical FPGA. Both of algorithms could achieve comparableresults to those obtained by Versatile Placement and Routing (VPR) toolsin terms of the number of routing channel tracks

    FPGA Implementation of the Front-End of a DOCSIS 3.0 Receiver

    Get PDF
    The introduction of cable television (CATV) in the 1940s and 1950s has significantly influenced communications technology. Originally supplying only one-way television programming, the CATV industry recognized the potential of two-way communications. Starting with the introduction of pay-per view services in the 1980s, two-way communications over CATV networks eventually expanded into supplying internet access services. The increased demand for CATV services, and thus the increased demand for CATV equipment, has led the CATV industry to develop interoperability standards. The primary standard now used by the CATV industry is the Data Over Cable Service Specification (DOCSIS). DOCSIS defines both the upstream (data towards the CATV provider) and downstream (data towards the CATV customer) transmission channels. This includes specifications for the modulators and demodulators used in these channels. The number of manufacturers of CATV modulators and demodulators has greatly increased over the last twenty years and continues to do so. As the number of competitive CATV equipment suppliers increases, these manufacturers must look to ways to remain competitive by reducing time-to-market and costs associated with equipment design, as well as allowing their designs to be flexible so that they may adapt to the improvements in DOCSIS. In the past, manufacturers have primarily used Application Specific Integrated Circuits (ASICs) to implement digital hardware designs for CATV equipment. ASICs have a very high initial setup cost and do not allow for system modifications without a complete redesign. Recently, Field Programmable Gate Array (FPGA) technology has been introduced that allows manufacturers to both modify their designed digital hardware structures without a complete physical hardware redesign, as well as providing a reduced initial setup cost. Although in the long term, ASICs provide a cheaper alternative to FPGAs when produced in quantity, FPGAs provide quicker time-to-market in new product development and allow changes to made after initial release. This ability to change designs after release and the quicker time-to-market has led manufacturers to adopt FPGAs in new products. A critical component in the upstream channel of a DOCSIS compliant system is the Quadrature Amplitude Modulated (QAM) receiver. The data received at the QAM receiver have undergone several impairments including additive noise, timing offset, and frequency and phase mismatches between the transmitted modulated signal and the signal received at the demodulator. It is the function of the front-end of the receiver to correct for these impairments. This thesis presents methods for, and an example of, the design and implementation of a DOCSIS compliant QAM receiver front-end that corrects for timing, phase and frequency impairments experienced in the upstream communication channel when additive noise is present. The circuits presented are designed and implemented to reduce hardware costs when using FPGA technology. In addition, the circuits designed do not use proprietary logic, which gives designers more flexibility when implementing their own demodulator front-end circuitry. The FPGA implementation presented in this thesis achieves an average MER of 54.3 dB in a no-noise channel and close to 31 dB MER in a 25 dBc AWGN channel. The overall design uses 65 dedicated 18-bit by 18-bit multipliers and 2,970 bytes of RAM to implement the digital front-end of the receiver

    A DETECTION AND DATA ACQUISITION SYSTEM FOR PRECISION BETA DECAY SPECTROSCOPY

    Get PDF
    Free neutron and nuclear beta decay spectroscopy serves as a robust laboratory for investigations of the Standard Model of Particle Physics. Observables such as decay product angular correlations and energy spectra overconstrain the Standard Model and serve as a sensitive probe for Beyond the Standard Model physics. Improved measurement of these quantities is necessary to complement the TeV scale physics being conducted at the Large Hadron Collider. The UCNB, 45Ca, and Nab experiments aim to improve upon existing measurements of free neutron decay angular correlations and set new limits in the search for exotic couplings in beta decay. To achieve these experimental goals, a highly-pixelated, thick silicon detector with a 100 nm entrance window has been developed for precision beta spectroscopy and the direct detection of 30 keV beta decay protons. The detector has been characterized for its performance in energy reconstruction and particle arrival time determination. A Monte Carlo simulation of signal formation in the silicon detector and propagation through the electronics chain has been written to develop optimal signal analysis algorithms for minimally biased energy and timing extraction. A tagged-electron timing test has been proposed and investigated as a means to assess the validity of these Monte Carlo efforts. A universal platform for data acquisition (DAQ) has been designed and implemented in National Instrument\u27s PXIe-5171R digitizer/FPGA hardware. The DAQ retains a ring buffer of the most recent 400 ms of data in all 256 channels, so that a waveform trace can be returned from any combination of pixels and resolution for complete energy reconstruction. Low-threshold triggers on individual channels were implemented in FPGA as a generic piecewise-polynomial filter for universal, real-time digital signal processing, which allows for arbitrary filter implementation on a pixel-by-pixel basis. This system is universal in the sense that it has complete flexible, complex, and debuggable triggering at both the pixel and global level without recompiling the firmware. The culmination of this work is a system capable of a 10 keV trigger threshold, 3 keV resolution, and maximum 300 ps arrival time systematic, even in the presence of large amplitude noise components

    FPGA implementation of a LSTM Neural Network

    Get PDF
    Este trabalho pretende fazer uma implementação customizada, em Hardware, duma Rede Neuronal Long Short-Term Memory. O modelo python, assim como a descrição Verilog, e síntese RTL, encontram-se terminadas. Falta apenas fazer o benchmarking e a integração de um sistema de aprendizagem

    Computer aided synthesis and optimisation of electronic logic circuits

    Get PDF
    In this thesis, a variety of algorithms for synthesis and optimisation of combinational and sequential logic circuits are developed. These algorithms could be part of new commercial EGAD package for future VLSI digital designs. The results show that considerable saving in components can be achieved resulting in simpler designs that are smaller, cheaper, consume less power and easier to test. The purpose of generating different sets of coefficients related to Reed Muller (RM) is that they contain different number of terms; therefore the minimum one can be selected to design the circuits with reduced gate count. To widen the search space and achieve better synthesis tools, representations of Mixed Polarity Reed Muller (MPRM), Mixed Polarity Dual Reed Muller (MPDRM), and Pseduo Kronecker Reed Muller (PKRO RM) expansions are investigated. Efficient and fast combinatorial techniques and algorithms are developed for the following: â Bidirectional conversion between MPRM/ MPDRM form and Fixed Polarity Reed Muller forms (FPRM)/Fixed Polarity Dual Reed Muller forms (FPDRM) form respectively. The main advantages for these techniques are their simplicity and suitability for single and multi output Boolean functions. â Computing the coefficients of any polarity related to PKRO_RM class starting from FPRM coefficients or Canonical Sum of Products (CSOP). â Computing the coefficients of any polarity related to MPRM/or MPDRM directly from standard form of CSOP/Canonical Product of sums (CPOS) Boolean functions, respectively. The proposed algorithms are efficient in terms of CPU time and can be used for large functions. For optimisation of combinational circuits, new techniques and algorithms based on algebraic techniques are developed which can be used to generate reduced RM expressions to design circuits in RM/DRM domain starting from FPRM/FPDRM, respectively. The outcome for these techniques is expansion in Reed Muller domain with minimal terms. The search space is 3`" Exclusive OR Sum of Product (ESOP)/or Exclusive NOR Product of Sums (ENPOS) expansions. Genetic Algorithms (GAs) are also developed to optimise combinational circuits to find optimal MPRM/MPDRM among 3° different polarities without the need to do exhaustive search. These algorithms are developed for completely and incompletely specified Boolean functions. The experimental results show that GA can find optimum solutions in a short time compared with long time required running exhaustive search in all the benchmarks tested. Multi Objective Genetic Algorithm (MOGA) is developed and implemented to determine the optimal state assignment which results in less area and power dissipation for completely and incompletely specified sequential circuits. The goal is to find the best assignments which reduce the component count and switching activity simultaneously. The experimental results show that saving in components and switching activity are achieved in most of the benchmarks tested compared with recently published research. All algorithms are implemented in C++.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Heterogeneous Acceleration for 5G New Radio Channel Modelling Using FPGAs and GPUs

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Computer aided synthesis and optimisation of electronic logic circuits

    Get PDF
    In this thesis, a variety of algorithms for synthesis and optimisation of combinational and sequential logic circuits are developed. These algorithms could be part of new commercial EGAD package for future VLSI digital designs. The results show that considerable saving in components can be achieved resulting in simpler designs that are smaller, cheaper, consume less power and easier to test.The purpose of generating different sets of coefficients related to Reed Muller (RM) is that they contain different number of terms; therefore the minimum one can be selected to design the circuits with reduced gate count. To widen the search space and achieve better synthesis tools, representations of Mixed Polarity Reed Muller (MPRM), Mixed Polarity Dual Reed Muller (MPDRM), and Pseduo Kronecker Reed Muller (PKRO RM) expansions are investigated. Efficient and fast combinatorial techniques and algorithms are developed for the following:- Bidirectional conversion between MPRM/ MPDRM form and Fixed Polarity Reed Muller forms (FPRM)/Fixed Polarity Dual Reed Muller forms (FPDRM) form respectively. The main advantages for these techniques are their simplicity and suitability for single and multi output Boolean functions.- Computing the coefficients of any polarity related to PKRO_RM class starting from FPRM coefficients or Canonical Sum of Products (CSOP).- Computing the coefficients of any polarity related to MPRM/or MPDRM directly from standard form of CSOP/Canonical Product of sums (CPOS) Boolean functions, respectively. The proposed algorithms are efficient in terms of CPU time and can be used for large functions.For optimisation of combinational circuits, new techniques and algorithms based on algebraic techniques are developed which can be used to generate reduced RM expressions to design circuits in RM/DRM domain starting from FPRM/FPDRM, respectively. The outcome for these techniques is expansion in Reed Muller domain with minimal terms. The search space is 3`" Exclusive OR Sum of Product (ESOP)/or Exclusive NOR Product of Sums (ENPOS) expansions.Genetic Algorithms (GAs) are also developed to optimise combinational circuits to find optimal MPRM/MPDRM among 3° different polarities without the need to do exhaustive search. These algorithms are developed for completely and incompletely specified Boolean functions. The experimental results show that GA can find optimum solutions in a short time compared with long time required running exhaustive search in all the benchmarks tested.Multi Objective Genetic Algorithm (MOGA) is developed and implemented to determine the optimal state assignment which results in less area and power dissipation for completely and incompletely specified sequential circuits. The goal is to find the best assignments which reduce the component count and switching activity simultaneously. The experimental results show that saving in components and switchingactivity are achieved in most of the benchmarks tested compared with recentlypublished research. All algorithms are implemented in C++

    Towards Lightweight AI: Leveraging Stochasticity, Quantization, and Tensorization for Forecasting

    Get PDF
    The deep neural network is an intriguing prognostic model capable of learning meaningful patterns that generalize to new data. The deep learning paradigm has been widely adopted across many domains, including for natural language processing, genomics, and automatic music transcription. However, deep neural networks rely on a plethora of underlying computational units and data, collectively demanding a wealth of compute and memory resources for practical tasks. This model complexity prohibits the use of larger deep neural networks for resource-critical applications, such as edge computing. In order to reduce model complexity, several research groups are actively studying compression methods, hardware accelerators, and alternative computing paradigms. These orthogonal research explorations often leave a gap in understanding the interplay of the optimization mechanisms and their overall feasibility for a given task. In this thesis, we address this gap by developing a holistic solution to assess the model complexity reduction theoretically and quantitatively at both high-level and low-level abstractions for training and inference. At the algorithmic level, a novel deep, yet lightweight, recurrent architecture is proposed that extends the conventional echo state network. The architecture employs random dynamics, brain-inspired plasticity mechanisms, tensor decomposition, and hierarchy as the key features to enrich learning. Furthermore, the hyperparameter landscape is optimized via a particle swarm optimization algorithm. To deploy these networks efficiently onto low-end edge devices, both ultra-low and mixed-precision numerical formats are studied within our feedforward deep neural network hardware accelerator. More importantly, the tapered-precision posit format with a novel exact-dot-product algorithm is employed in the low-level digital architectures to study its efficacy in resource utilization. The dynamics of the architecture are characterized through neuronal partitioning and Lyapunov stability, and we show that superlative networks emerge beyond the edge of chaos with an agglomeration of weak learners. We also demonstrate that tensorization improves model performance by preserving correlations present in multi-way structures. Low-precision posits are found to consistently outperform other formats on various image classification tasks and, in conjunction with compression, we achieve magnitudes of speedup and memory savings for both training and inference for the forecasting of chaotic time series and polyphonic music tasks. This culmination of methods greatly improves the feasibility of deploying rich predictive models on edge devices
    • …
    corecore