753 research outputs found

    Closed Form for Some Gaussian Convolutions

    Full text link
    The convolution of a function with an isotropic Gaussian appears in many contexts such as differential equations, computer vision, signal processing, and numerical optimization. Although this convolution does not always have a closed form expression, there are important family of functions for which closed form exists. This article investigates some of such cases

    Linear interpolation gives better gradients than Gaussian smoothing in derivative-free optimization

    Full text link
    In this paper, we consider derivative free optimization problems, where the objective function is smooth but is computed with some amount of noise, the function evaluations are expensive and no derivative information is available. We are motivated by policy optimization problems in reinforcement learning that have recently become popular [Choromaski et al. 2018; Fazel et al. 2018; Salimans et al. 2016], and that can be formulated as derivative free optimization problems with the aforementioned characteristics. In each of these works some approximation of the gradient is constructed and a (stochastic) gradient method is applied. In [Salimans et al. 2016] the gradient information is aggregated along Gaussian directions, while in [Choromaski et al. 2018] it is computed along orthogonal direction. We provide a convergence rate analysis for a first-order line search method, similar to the ones used in the literature, and derive the conditions on the gradient approximations that ensure this convergence. We then demonstrate via rigorous analysis of the variance and by numerical comparisons on reinforcement learning tasks that the Gaussian sampling method used in [Salimans et al. 2016] is significantly inferior to the orthogonal sampling used in [Choromaski et al. 2018] as well as more general interpolation methods.Comment: 14 pages, 2 figures. arXiv admin note: text overlap with arXiv:1905.0133

    AdaDGS: An adaptive black-box optimization method with a nonlocal directional Gaussian smoothing gradient

    Full text link
    The local gradient points to the direction of the steepest slope in an infinitesimal neighborhood. An optimizer guided by the local gradient is often trapped in local optima when the loss landscape is multi-modal. A directional Gaussian smoothing (DGS) approach was recently proposed in (Zhang et al., 2020) and used to define a truly nonlocal gradient, referred to as the DGS gradient, for high-dimensional black-box optimization. Promising results show that replacing the traditional local gradient with the DGS gradient can significantly improve the performance of gradient-based methods in optimizing highly multi-modal loss functions. However, the optimal performance of the DGS gradient may rely on fine tuning of two important hyper-parameters, i.e., the smoothing radius and the learning rate. In this paper, we present a simple, yet ingenious and efficient adaptive approach for optimization with the DGS gradient, which removes the need of hyper-parameter fine tuning. Since the DGS gradient generally points to a good search direction, we perform a line search along the DGS direction to determine the step size at each iteration. The learned step size in turn will inform us of the scale of function landscape in the surrounding area, based on which we adjust the smoothing radius accordingly for the next iteration. We present experimental results on high-dimensional benchmark functions, an airfoil design problem and a game content generation problem. The AdaDGS method has shown superior performance over several the state-of-the-art black-box optimization methods.Comment: 14 page

    Derivative-free optimization methods

    Full text link
    In many optimization problems arising from scientific, engineering and artificial intelligence applications, objective and constraint functions are available only as the output of a black-box or simulation oracle that does not provide derivative information. Such settings necessitate the use of methods for derivative-free, or zeroth-order, optimization. We provide a review and perspectives on developments in these methods, with an emphasis on highlighting recent developments and on unifying treatment of such problems in the non-linear optimization and machine learning literature. We categorize methods based on assumed properties of the black-box functions, as well as features of the methods. We first overview the primary setting of deterministic methods applied to unconstrained, non-convex optimization problems where the objective function is defined by a deterministic black-box oracle. We then discuss developments in randomized methods, methods that assume some additional structure about the objective (including convexity, separability and general non-smooth compositions), methods for problems where the output of the black-box oracle is stochastic, and methods for handling different types of constraints

    A Novel Evolution Strategy with Directional Gaussian Smoothing for Blackbox Optimization

    Full text link
    We propose an improved evolution strategy (ES) using a novel nonlocal gradient operator for high-dimensional black-box optimization. Standard ES methods with dd-dimensional Gaussian smoothing suffer from the curse of dimensionality due to the high variance of Monte Carlo (MC) based gradient estimators. To control the variance, Gaussian smoothing is usually limited in a small region, so existing ES methods lack nonlocal exploration ability required for escaping from local minima. We develop a nonlocal gradient operator with directional Gaussian smoothing (DGS) to address this challenge. The DGS conducts 1D nonlocal explorations along dd orthogonal directions in Rd\mathbb{R}^d, each of which defines a nonlocal directional derivative as a 1D integral. We then use Gauss-Hermite quadrature, instead of MC sampling, to estimate the dd 1D integrals to ensure high accuracy (i.e., small variance). Our method enables effective nonlocal exploration to facilitate the global search in high-dimensional optimization. We demonstrate the superior performance of our method in three sets of examples, including benchmark functions for global optimization, and real-world science and engineering applications

    An adaptive stochastic gradient-free approach for high-dimensional blackbox optimization

    Full text link
    In this work, we propose a novel adaptive stochastic gradient-free (ASGF) approach for solving high-dimensional nonconvex optimization problems based on function evaluations. We employ a directional Gaussian smoothing of the target function that generates a surrogate of the gradient and assists in avoiding bad local optima by utilizing nonlocal information of the loss landscape. Applying a deterministic quadrature scheme results in a massively scalable technique that is sample-efficient and achieves spectral accuracy. At each step we randomly generate the search directions while primarily following the surrogate of the smoothed gradient. This enables exploitation of the gradient direction while maintaining sufficient space exploration, and accelerates convergence towards the global extrema. In addition, we make use of a local approximation of the Lipschitz constant in order to adaptively adjust the values of all hyperparameters, thus removing the careful fine-tuning of current algorithms that is often necessary to be successful when applied to a large class of learning tasks. As such, the ASGF strategy offers significant improvements when solving high-dimensional nonconvex optimization problems when compared to other gradient-free methods (including the so called "evolutionary strategies") as well as iterative approaches that rely on the gradient information of the objective function. We illustrate the improved performance of this method by providing several comparative numerical studies on benchmark global optimization problems and reinforcement learning tasks

    Derivative-Free Optimization of Noisy Functions via Quasi-Newton Methods

    Full text link
    This paper presents a finite difference quasi-Newton method for the minimization of noisy functions. The method takes advantage of the scalability and power of BFGS updating, and employs an adaptive procedure for choosing the differencing interval hh based on the noise estimation techniques of Hamming (2012) and Mor\'e and Wild (2011). This noise estimation procedure and the selection of hh are inexpensive but not always accurate, and to prevent failures the algorithm incorporates a recovery mechanism that takes appropriate action in the case when the line search procedure is unable to produce an acceptable point. A novel convergence analysis is presented that considers the effect of a noisy line search procedure. Numerical experiments comparing the method to a function interpolating trust region method are presented.Comment: 26 pages, 9 figure

    Hessian Estimation via Stein's Identity in Black-Box Problems

    Full text link
    When the available information is noisy zeroth-order (ZO) oracle, stochastic approximation methods are popular for estimating the root of the multivariate gradient equation. Inspired by the Stein's identity, this work establishes a novel Hessian approximation scheme. We compare it alongside with second-order simultaneous perturbation stochastic approximation (2SPSA). On the basis of the almost sure convergence and the same convergence rate, 2SPSA requires four ZO queries, while ours requires three ZO queries. Moreover, 2SPSA requires two statistically independent perturbations and two differencing stepsizes, while ours requires generating one perturbation vector only and tuning one differencing stepsize only. Besides, the weighting mechanism for the Hessian estimate is generalized and the smoothness restriction on the loss function is relaxed compared to 2SPSA. Finally, we present numerical support for the reduced per-iteration ZO query complexity.Comment: 17 pages, 2 figures, accepted by Mathematical and Scientific Machine Learning 2021, to appear in Proceedings of Machine Learning Researc

    Recent Theoretical Advances in Non-Convex Optimization

    Full text link
    Motivated by recent increased interest in optimization algorithms for non-convex optimization in application to training deep neural networks and other optimization problems in data analysis, we give an overview of recent theoretical results on global performance guarantees of optimization algorithms for non-convex optimization. We start with classical arguments showing that general non-convex problems could not be solved efficiently in a reasonable time. Then we give a list of problems that can be solved efficiently to find the global minimizer by exploiting the structure of the problem as much as it is possible. Another way to deal with non-convexity is to relax the goal from finding the global minimum to finding a stationary point or a local minimum. For this setting, we first present known results for the convergence rates of deterministic first-order methods, which are then followed by a general theoretical analysis of optimal stochastic and randomized gradient schemes, and an overview of the stochastic first-order methods. After that, we discuss quite general classes of non-convex problems, such as minimization of α\alpha-weakly-quasi-convex functions and functions that satisfy Polyak--Lojasiewicz condition, which still allow obtaining theoretical convergence guarantees of first-order methods. Then we consider higher-order and zeroth-order/derivative-free methods and their convergence rates for non-convex optimization problems.Comment: 81 page

    A stochastic subspace approach to gradient-free optimization in high dimensions

    Full text link
    We present a stochastic descent algorithm for unconstrained optimization that is particularly efficient when the objective function is slow to evaluate and gradients are not easily obtained, as in some PDE-constrained optimization and machine learning problems. The algorithm maps the gradient onto a low-dimensional random subspace of dimension â„“\ell at each iteration, similar to coordinate descent but without restricting directional derivatives to be along the axes. Without requiring a full gradient, this mapping can be performed by computing â„“\ell directional derivatives (e.g., via forward-mode automatic differentiation). We give proofs for convergence in expectation under various convexity assumptions as well as probabilistic convergence results under strong-convexity. Our method extends the well-known Gaussian smoothing technique to descent in subspaces of dimension greater than one, opening the doors to new analysis of Gaussian smoothing when more than one directional derivative is used at each iteration. We also provide a finite-dimensional variant of a special case of the Johnson-Lindenstrauss lemma. Experimentally, we show that our method compares favorably to coordinate descent, Gaussian smoothing, gradient descent and BFGS (when gradients are calculated via forward-mode automatic differentiation) on problems from the machine learning and shape optimization literature.Comment: arXiv admin note: substantial text overlap with arXiv:1904.0114
    • …
    corecore