581 research outputs found

    Multichannel biomedical telemetry system using delta modulation

    Get PDF
    Telemetering of biomedical data from unrestrained subjects requires a system to be compact, reliable and efficient. A survey of the existing multi-channel biomedical telemetry showed that most of the systems employ analogue or uncoded (digital) techniques of encoding biomedical signals. These techniques are less reliable, employ wider bandwidth and are difficult to implement compared to the coded (digital) techniques of modulation. A theoretical study of the coded techniques of modulation for encoding biomedical signals showed-that pulse code modulation, though more efficient, calls for extensive circuitry and makes it expensive and difficult to implement. Delta modulation and delta sigma modulation were found to be simpler, easier to Implement and efficient. [Continues.

    An Oversampled Analog To Digital Converter For Acquiring Neural Signals

    Get PDF
    A third order delta-sigma modulator and associated low-pass digital filter is designed for an analog to digital converter: ADC) for sensing bioelectric phenomena. The third order noise shaping reduces the quantization noise in the baseband and the digital lowpass filter greatly attenuates the out of band quantization noise, increasing the effective number of bits. As part of a neural signal acquisition system designed by The BrainScope Company to capture Electro-Encephalogram: EEG) and Automated Brainstem Response: ABR) signals, this paper describes the design of a third order Delta-Sigma modulator which meets or exceeds the low noise specifications mandated by previous BrainScope products. The third order cascaded delta-sigma modulator attains a resolution of 12.3 bits in a signal bandwidth of 3kHz and 14.9 bits in a signal bandwidth of 100Hz, operating from a +/- 1.76V reference with a 250kHz clock

    AGING AND SLEEP STAGE EFFECTS ON ENTROPY OF ELECTROENCEPHALOGRAM SIGNALS

    Get PDF
    The aging brain is characterized by alteration in synaptic contacts, which leads to decline of motor and cognitive functions. These changes are reflected in the age related shifts in power spectrum of electroencephalogram (EEG) signals in both wakefulness and sleep. Various non-linear measures have been used to obtain more insights from EEG analysis compared to the conventional spectral analysis. In our study we used Sample Entropy to quantify regularity of the EEG signal. Because elderly subjects arouse from sleep more often than younger subjects, we hypothesized that Entropy of EEG signals from elderly subjects would be higher than that from middle aged subjects, within a sleep stage. We also hypothesized that the entropy increases during and following an arousal and does not return to background levels immediately after an arousal. Our results show that Sample Entropy varies systematically with sleep state in healthy middle-aged and elderly female subjects, reflecting the changing regularity in the EEG. Sample Entropy is significantly higher in elderly in sleep Stage 2 and REM, suggesting that in these two sleep stages the cortical state is closer to wake than in middle-aged women. Sample Entropy is higher in post-arousal compared to the pre-arousal and stays high for a 30 sec period

    A Low-Power Single-Bit Continuous-Time ΔΣ Converter with 92.5 dB Dynamic Range for Biomedical Applications

    Get PDF
    A third-order single-bit CT-ΔΣ modulator for generic biomedical applications is implemented in a 0.15 ”m FDSOI CMOS process. The overall power efficiency is attained by employing a single-bit ΔΣ and a subthreshold FDSOI process. The loop-filter coefficients are determined using a systematic design centering approach by accounting for the integrator non-idealities. The single-bit CT-ΔΣ modulator consumes 110 ”W power from a 1.5 V power supply when clocked at 6.144 MHz. The simulation results for the modulator exhibit a dynamic range of 94.4 dB and peak SNDR of 92.4 dB for 6 kHz signal bandwidth. The figure of merit (FoM) for the third-order, single-bit CT-ΔΣ modulator is 0.271 pJ/level

    Machine learning with ensemble stacking model for automated sleep staging using dual-channel EEG signal

    Get PDF
    Abstract Sleep staging is an important part of diagnosing the different types of sleep-related disorders because any discrepancies in the sleep scoring process may cause serious health problems such as misinterpretations of sleep patterns, medication errors, and improper diagnosis. The best way of analyzing sleep staging is visual interpretations of the polysomnography (PSG) signals recordings from the patients, which is a quite tedious task, requires more domain experts, and time-consuming process. This proposed study aims to develop a new automated sleep staging system using the brain EEG signals. Based on a new automated sleep staging system based on an ensemble learning stacking model that integrates Random Forest (RF) and eXtreme Gradient Boosting (XGBoosting). Additionally, this proposed methodology considers the subjects' age, which helps analyze the S1 sleep stage properly. In this study, both linear (time and frequency) and non-linear features are extracted from the pre-processed signals. The most relevant features are selected using the ReliefF weight algorithm. Finally, the selected features are classified through the proposed two-layer stacking model. The proposed methodology performance is evaluated using the two most popular datasets, such as the Sleep-EDF dataset (S-EDF) and Sleep Expanded-EDF database (SE-EDF) under the Rechtschaffen & Kales (R&K) sleep scoring rules. The performance of the proposed method is also compared with the existing published sleep staging methods. The comparison results signify that the proposed sleep staging system has an excellent improvement in classification accuracy for the six-two sleep states classification. In the S-EDF dataset, the overall accuracy and Cohen's kappa coefficient score obtained by the proposed model is (91.10%, 0.87) and (90.68%, 0.86) with inclusion and exclusion of age feature using the Fpz-Cz channel, respectively. Similarly, the Pz-Oz channel's performance is (90.56%, 0.86) with age feature and (90.11%, 0.86) without age feature. The performed results with the SE-EDF dataset using Fpz-Cz channel is (81.32%, 0.77) and (81.06%, 0.76), using Pz-Oz channel with the inclusion and exclusion of the age feature, respectively. Similarly the model achieved an overall accuracy of 96.67% (CT-6), 96.60% (CT-5), 96.28% (CT-4),96.30% (CT-3) and 97.30% (CT-2) for with 16 selected features using S-EDF database. Similarly the model reported an overall accuracy of 85.85%, 84.98%, 85.51%, 85.37% and 87.40% for CT-6 to CT-2 with 18 selected features using SE-EDF database

    A Python-based Brain-Computer Interface Package for Neural Data Analysis

    Get PDF
    Anowar, Md Hasan, A Python-based Brain-Computer Interface Package for Neural Data Analysis. Master of Science (MS), December, 2020, 70 pp., 4 tables, 23 figures, 74 references. Although a growing amount of research has been dedicated to neural engineering, only a handful of software packages are available for brain signal processing. Popular brain-computer interface packages depend on commercial software products such as MATLAB. Moreover, almost every brain-computer interface software is designed for a specific neuro-biological signal; there is no single Python-based package that supports motor imagery, sleep, and stimulated brain signal analysis. The necessity to introduce a brain-computer interface package that can be a free alternative for commercial software has motivated me to develop a toolbox using the python platform. In this thesis, the structure of MEDUSA, a brain-computer interface toolbox, is presented. The features of the toolbox are demonstrated with publicly available data sources. The MEDUSA toolbox provides a valuable tool to biomedical engineers and computational neuroscience researchers

    Design and Implementation of Complexity Reduced Digital Signal Processors for Low Power Biomedical Applications

    Get PDF
    Wearable health monitoring systems can provide remote care with supervised, inde-pendent living which are capable of signal sensing, acquisition, local processing and transmission. A generic biopotential signal (such as Electrocardiogram (ECG), and Electroencephalogram (EEG)) processing platform consists of four main functional components. The signals acquired by the electrodes are ampliïŹed and preconditioned by the (1) Analog-Front-End (AFE) which are then digitized via the (2) Analog-to-Digital Converter (ADC) for further processing. The local digital signal processing is usually handled by a custom designed (3) Digital Signal Processor (DSP) which is responsible for either anyone or combination of signal processing algorithms such as noise detection, noise/artefact removal, feature extraction, classiïŹcation and compres-sion. The digitally processed data is then transmitted via the (4) transmitter which is renown as the most power hungry block in the complete platform. All the afore-mentioned components of the wearable systems are required to be designed and ïŹtted into an integrated system where the area and the power requirements are stringent. Therefore, hardware complexity and power dissipation of each functional component are crucial aspects while designing and implementing a wearable monitoring platform. The work undertaken focuses on reducing the hardware complexity of a biosignal DSP and presents low hardware complexity solutions that can be employed in the aforemen-tioned wearable platforms. A typical state-of-the-art system utilizes Sigma Delta (Σ∆) ADCs incorporating a Σ∆ modulator and a decimation ïŹlter whereas the state-of-the-art decimation ïŹlters employ linear phase Finite-Impulse-Response (FIR) ïŹlters with high orders that in-crease the hardware complexity [1–5]. In this thesis, the novel use of minimum phase InïŹnite-Impulse-Response (IIR) decimators is proposed where the hardware complexity is massively reduced compared to the conventional FIR decimators. In addition, the non-linear phase eïŹ€ects of these ïŹlters are also investigated since phase non-linearity may distort the time domain representation of the signal being ïŹltered which is un-desirable eïŹ€ect for biopotential signals especially when the ïŹducial characteristics carry diagnostic importance. In the case of ECG monitoring systems the eïŹ€ect of the IIR ïŹlter phase non-linearity is minimal which does not aïŹ€ect the diagnostic accuracy of the signals. The work undertaken also proposes two methods for reducing the hardware complexity of the popular biosignal processing tool, Discrete Wavelet Transform (DWT). General purpose multipliers are known to be hardware and power hungry in terms of the number of addition operations or their underlying building blocks like full adders or half adders required. Higher number of adders leads to an increase in the power consumption which is directly proportional to the clock frequency, supply voltage, switching activity and the resources utilized. A typical Field-Programmable-Gate-Array’s (FPGA) resources are Look-up Tables (LUTs) whereas a custom Digital Signal Processor’s (DSP) are gate-level cells of standard cell libraries that are used to build adders [6]. One of the proposed methods is the replacement of the hardware and power hungry general pur-pose multipliers and the coeïŹƒcient memories with reconïŹgurable multiplier blocks that are composed of simple shift-add networks and multiplexers. This method substantially reduces the resource utilization as well as the power consumption of the system. The second proposed method is the design and implementation of the DWT ïŹlter banks using IIR ïŹlters which employ less number of arithmetic operations compared to the state-of-the-art FIR wavelets. This reduces the hardware complexity of the analysis ïŹlter bank of the DWT and can be employed in applications where the reconstruction is not required. However, the synthesis ïŹlter bank for the IIR wavelet transform has a higher computational complexity compared to the conventional FIR wavelet synthesis ïŹlter banks since re-indexing of the ïŹltered data sequence is required that can only be achieved via the use of extra registers. Therefore, this led to the proposal of a novel design which replaces the complex IIR based synthesis ïŹlter banks with FIR ïŹl-ters which are the approximations of the associated IIR ïŹlters. Finally, a comparative study is presented where the hybrid IIR/FIR and FIR/FIR wavelet ïŹlter banks are de-ployed in a typical noise reduction scenario using the wavelet thresholding techniques. It is concluded that the proposed hybrid IIR/FIR wavelet ïŹlter banks provide better denoising performance, reduced computational complexity and power consumption in comparison to their IIR/IIR and FIR/FIR counterparts

    DEVELOPMENT OF AN ACCURATE SEIZURE DETECTION SYSTEM USING RANDOM FOREST CLASSIFIER WITH ICA BASED ARTIFACT REMOVAL ON EEG DATA

    Get PDF
    Abstract The creation of a reliable artifact removal and precise epileptic seizure identification system using Seina Scalp EEG data and cutting-edge machine learning techniques is presented in this paper. Random Forest classifier used for seizure classification, and independent component analysis (ICA) is used for artifact removal. Various artifacts, such as eye blinks, muscular activity, and environmental noise, are successfully recognized and removed from the EEG signals using ICA-based artifact removal, increasing the accuracy of the analysis that comes after. A precise distinction between seizure and non-seizure segments is made possible by the Random Forest Classifier, which was created expressly to capture the spatial and temporal patterns associated with epileptic seizures. Experimental evaluation of the Seina Scalp EEG Data demonstrates the excellent accuracy of our approach, achieving a 96% seizure identification rate A potential strategy for improving the accuracy and clinical utility of EEG-based epilepsy diagnosis is the merging of modern signal processing methods and deep learning algorithms

    Analysis of Signal Decomposition and Stain Separation methods for biomedical applications

    Get PDF
    Nowadays, the biomedical signal processing and classification and medical image interpretation play an essential role in the detection and diagnosis of several human diseases. The problem of high variability and heterogeneity of information, which is extracted from digital data, can be addressed with signal decomposition and stain separation techniques which can be useful approaches to highlight hidden patterns or rhythms in biological signals and specific cellular structures in histological color images, respectively. This thesis work can be divided into two macro-sections. In the first part (Part I), a novel cascaded RNN model based on long short-term memory (LSTM) blocks is presented with the aim to classify sleep stages automatically. A general workflow based on single-channel EEG signals is developed to enhance the low performance in staging N1 sleep without reducing the performances in the other sleep stages (i.e. Wake, N2, N3 and REM). In the same context, several signal decomposition techniques and time-frequency representations are deployed for the analysis of EEG signals. All extracted features are analyzed by using a novel correlation-based timestep feature selection and finally the selected features are fed to a bidirectional RNN model. In the second part (Part II), a fully automated method named SCAN (Stain Color Adaptive Normalization) is proposed for the separation and normalization of staining in digital pathology. This normalization system allows to standardize digitally, automatically and in a few seconds, the color intensity of a tissue slide with respect to that of a target image, in order to improve the pathologist’s diagnosis and increase the accuracy of computer-assisted diagnosis (CAD) systems. Multiscale evaluation and multi-tissue comparison are performed for assessing the robustness of the proposed method. In addition, a stain normalization based on a novel mathematical technique, named ICD (Inverse Color Deconvolution) is developed for immunohistochemical (IHC) staining in histopathological images. In conclusion, the proposed techniques achieve satisfactory results compared to state-of-the-art methods in the same research field. The workflow proposed in this thesis work and the developed algorithms can be employed for the analysis and interpretation of other biomedical signals and for digital medical image analysis

    Co-ordination of brain and heart oscillations during non-rapid eye movement sleep

    Get PDF
    Oscillatory activities of the brain and heart show a strong variation across wakefulness and sleep. Separate lines of research indicate that non‐rapid eye movement (NREM) sleep is characterised by electroencephalographic slow oscillations (SO), sleep spindles, and phase–amplitude coupling of these oscillations (SO–spindle coupling), as well as an increase in high‐frequency heart rate variability (HF‐HRV), reflecting enhanced parasympathetic activity. The present study aimed to investigate further the potential coordination between brain and heart oscillations during NREM sleep. Data were derived from one sleep laboratory night with polysomnographic monitoring in 45 healthy participants (22 male, 23 female; mean age 37 years). The associations between the strength (modulation index [MI]) and phase direction of SO–spindle coupling (circular measure) and HF‐HRV during NREM sleep were investigated using linear modelling. First, a significant SO–spindle coupling (MI) was observed for all participants during NREM sleep, with spindle peaks preferentially occurring during the SO upstate (phase direction). Second, linear model analyses of NREM sleep showed a significant relationship between the MI and HF‐HRV (F = 20.1, r (2) = 0.30, p < 0.001) and a tentative circular‐linear correlation between phase direction and HF‐HRV (F = 3.07, r (2) = 0.12, p = 0.056). We demonstrated a co‐ordination between SO–spindle phase–amplitude coupling and HF‐HRV during NREM sleep, presumably related to parallel central nervous and peripheral vegetative arousal systems regulation. Further investigating the fine‐graded co‐ordination of brain and heart oscillations might improve our understanding of the links between sleep and cardiovascular health
    • 

    corecore