4 research outputs found

    A Delay Analysis of Sender-Initiated and Receiver-Initiated Reliable Multicast Protocols

    No full text
    A growing number of network applications require the use of a reliable multicast protocol to disseminate data from a source to a potentially large number of receivers. This paper presents an analytic performance analysis of the packet delay incurred under three generic sender- and receiver-initiated approaches towards reliable multicast. We focus on the host processing requirements of these protocols and derive expressions for average time between the initial arrival of a packet at a sender and its correct reception at a randomly chosen receiver. Our numerical results indicate that a NAK-based protocol that limits NAK generation by intentionally and randomly delaying NAK packets can achieve substantially higher throughput than the other two protocols examined, and can do so without suffering an appreciable higher delay over a range of system parameters. 1 Introduction A growing number of network applications require the use of a reliable multicast protocol to disseminate data from a..

    Study of architecture and protocols for reliable multicasting in packet switching networks

    Get PDF
    Group multicast protocols have been challenged to provide scalable solutions that meet the following requirements: (i) reliable delivery from different sources to all destinations within a multicast group; (ii) congestion control among multiple asynchronous sources. Although it is mainly a transport layer task, reliable group multicasting depends on routing architectures as well. This dissertation covers issues of both network and transport layers. Two routing architectures, tree and ring, are surveyed with a comparative study of their routing costs and impact to upper layer performances. Correspondingly, two generic transport protocol models are established for performance study. The tree-based protocol is rate-based and uses negative acknowledgment mechanisms for reliability control, while the ring-based protocol uses window-based flow control and positive acknowledgment schemes. The major performance measures observed in the study are network cost, multicast delay, throughput and efficiency. The results suggest that the tree architecture costs less at network layer than the ring, and helps to minimize latency under light network load. Meanwhile, heavy load reliable group multicasting can benefit from ring architecture, which facilitates window-based flow and congestion control. Based on the comparative study, a new two-hierarchy hybrid architecture, Rings Interconnected with Tree Architecture (RITA), is presented. Here, a multicast group is partitioned into multiple clusters with the ring as the intra-cluster architecture, and the tree as backbone architecture that implements inter-cluster multicasting. To compromise between performance measures such as delay and through put, reliability and congestion controls are accomplished at the transport layer with a hybrid use of rate and window-based protocols, which are based on either negative or positive feedback mechanisms respectively. Performances are compared with simulations against tree- and ring-based approaches. Results are encouraging because RITA achieves similar throughput performance as the ring-based protocol, but with significantly lowered delay. Finally, the multicast tree packing problem is discussed. In a network accommodating multiple concurrent multicast sessions, routing for an individual session can be optimized to minimize the competition with other sessions, rather than to minimize cost or delay. Packing lower bound and a heuristic are investigated. Simulation show that congestion can be reduced effectively with limited cost increase of routings

    Multicast Services for Multimedia Collaborative Applications

    Get PDF
    This work aims at providing multicast services for multimedia collaborative applications over large inter-networks such as the Internet. Multimedia collaborative applications are typically of small group size, slow group membership dynamics, and awareness of participants\u27 identities and locations. Moreover, they usually consist of several components such as audio, video, shared whiteboard, and single user application sharing engines that collectively help make the collaboration session successful. Each of these components has its demands from the communication layer that may differ from one component to another. This dissertation identifies the overall characteristics of multimedia collaborative applications and their individual components. It also determines the service requirements of the various components from the communication layer. Based on the analysis done in the thesis, new techniques of multicast services that are more suitable for multimedia collaborative applications are introduced. In particular, the focus will be on multicast address management and connection control, routing, congestion and flow control, and error control. First, we investigate multicast address management and connection control and provide a new technique for address management based on address space partitioning. Second, we study the problem of multicast routing and introduce a new approach that fits the real time nature of multimedia applications. Third, we explore the problem of congestion and flow control and introduce a new mechanism that takes into consideration the heterogeneity within the network and within the processing capabilities of the end systems. Last, we exploit the problem of error control and present a solution that supports various levels of error control to the different components within the collaboration session. We present analytic as well as simulation studies to evaluate our work, which show that our techniques outperform previous ones
    corecore