5,263 research outputs found

    Employing Environmental Data and Machine Learning to Improve Mobile Health Receptivity

    Get PDF
    Behavioral intervention strategies can be enhanced by recognizing human activities using eHealth technologies. As we find after a thorough literature review, activity spotting and added insights may be used to detect daily routines inferring receptivity for mobile notifications similar to just-in-time support. Towards this end, this work develops a model, using machine learning, to analyze the motivation of digital mental health users that answer self-assessment questions in their everyday lives through an intelligent mobile application. A uniform and extensible sequence prediction model combining environmental data with everyday activities has been created and validated for proof of concept through an experiment. We find that the reported receptivity is not sequentially predictable on its own, the mean error and standard deviation are only slightly below by-chance comparison. Nevertheless, predicting the upcoming activity shows to cover about 39% of the day (up to 58% in the best case) and can be linked to user individual intervention preferences to indirectly find an opportune moment of receptivity. Therefore, we introduce an application comprising the influences of sensor data on activities and intervention thresholds, as well as allowing for preferred events on a weekly basis. As a result of combining those multiple approaches, promising avenues for innovative behavioral assessments are possible. Identifying and segmenting the appropriate set of activities is key. Consequently, deliberate and thoughtful design lays the foundation for further development within research projects by extending the activity weighting process or introducing a model reinforcement.BMBF, 13GW0157A, Verbundprojekt: Self-administered Psycho-TherApy-SystemS (SELFPASS) - Teilvorhaben: Data Analytics and Prescription for SELFPASSTU Berlin, Open-Access-Mittel - 201

    The Oneiric Reality of Electronic Scents

    Full text link
    This paper investigates the ‘oneiric’ dimension of scent, by suggesting a new design process that can be worn as a fashion accessory or integrated in textile technologies, to subtly alter reality and go beyond our senses. It fuses wearable ‘electronic scent’ delivery systems with pioneering biotechnologies as a ground-breaking ‘science fashion’ enabler. The purpose is to enhance wellbeing by reaching a day‐dream state of being through the sense of smell. The sense of smell (or olfaction) is a chemical sense and part of the limbic system which regulates emotion and memory within the brain. The power of scent makes content extremely compelling by offering a heightened sense of reality which is intensified by emotions such as joy, anger and fear. Scent helps us appreciate all the senses as we embark on a sensory journey unlike any other; it enhances mood, keeps us in the moment, diverts us from distractions, reduces boredom and encourages creativity. This paper highlights the importance of smell, the forgotten sense, and also identifies how we as humans have grown to underuse our senses. It endeavours to show how the reinvention of our sensory faculties is possible through advances in biotechnology. It introduces the new ‘data senses’ as a wearable sensory platform that triggers and fine tunes the senses with fragrances. It puts forward a new design process that is currently being developed in clothing elements, jewellery and textile technologies, offering a new method to deliver scent electronically and intelligently in fashion and everyday consumer products. It creates a personal ‘scent wave’, around the wearer, to allow the mind to wander, to give a deeper sense of life or ‘lived reality’ (verses fantasy), a new found satisfaction and confidence, and to reach new heights of creativity. By combining biology with wearable technologies, we propose a biotechnological solution that can be translated into sensory fashion elements. This is a new trend in 21st century ‘data sensing’, based on holographic biosensors that sense the human condition, aromachology (the science of the effect of fragrance and behaviour), colour-therapy, and smart polymer science. The use of biosensors in the world of fashion and textiles, enables us to act on visual cues or detect scent signals and rising stress levels, allowing immediate information to hand. An ‘oneiric’ mood is triggered by a spectrum of scents which is encased in a micro-computerised ‘scent‐cell’ and integrated into clothing elements or jewellery. When we inhale an unexpected scent, it takes us by surprise; the power of fragrance fills us with pleasurable ripples of multi‐sensations and dream‐like qualities. The aromas create a near trance‐like experience that induces a daydream state of (immediate) satisfaction, or a ‘revived reality’ in our personal scent bubble of reality. The products and jewellery items were copyrighted and designed by Slim Barrett and the technology input was from EG Technology and Epigem

    CaloriNet: From silhouettes to calorie estimation in private environments

    Get PDF
    We propose a novel deep fusion architecture, CaloriNet, for the online estimation of energy expenditure for free living monitoring in private environments, where RGB data is discarded and replaced by silhouettes. Our fused convolutional neural network architecture is trainable end-to-end, to estimate calorie expenditure, using temporal foreground silhouettes alongside accelerometer data. The network is trained and cross-validated on a publicly available dataset, SPHERE_RGBD + Inertial_calorie. Results show state-of-the-art minimum error on the estimation of energy expenditure (calories per minute), outperforming alternative, standard and single-modal techniques.Comment: 11 pages, 7 figure

    DeepMood: Modeling Mobile Phone Typing Dynamics for Mood Detection

    Full text link
    The increasing use of electronic forms of communication presents new opportunities in the study of mental health, including the ability to investigate the manifestations of psychiatric diseases unobtrusively and in the setting of patients' daily lives. A pilot study to explore the possible connections between bipolar affective disorder and mobile phone usage was conducted. In this study, participants were provided a mobile phone to use as their primary phone. This phone was loaded with a custom keyboard that collected metadata consisting of keypress entry time and accelerometer movement. Individual character data with the exceptions of the backspace key and space bar were not collected due to privacy concerns. We propose an end-to-end deep architecture based on late fusion, named DeepMood, to model the multi-view metadata for the prediction of mood scores. Experimental results show that 90.31% prediction accuracy on the depression score can be achieved based on session-level mobile phone typing dynamics which is typically less than one minute. It demonstrates the feasibility of using mobile phone metadata to infer mood disturbance and severity.Comment: KDD 201
    corecore