1,148 research outputs found

    An Adaptive Mechanism for Accurate Query Answering under Differential Privacy

    Full text link
    We propose a novel mechanism for answering sets of count- ing queries under differential privacy. Given a workload of counting queries, the mechanism automatically selects a different set of "strategy" queries to answer privately, using those answers to derive answers to the workload. The main algorithm proposed in this paper approximates the optimal strategy for any workload of linear counting queries. With no cost to the privacy guarantee, the mechanism improves significantly on prior approaches and achieves near-optimal error for many workloads, when applied under (\epsilon, \delta)-differential privacy. The result is an adaptive mechanism which can help users achieve good utility without requiring that they reason carefully about the best formulation of their task.Comment: VLDB2012. arXiv admin note: substantial text overlap with arXiv:1103.136

    Linear and Range Counting under Metric-based Local Differential Privacy

    Full text link
    Local differential privacy (LDP) enables private data sharing and analytics without the need for a trusted data collector. Error-optimal primitives (for, e.g., estimating means and item frequencies) under LDP have been well studied. For analytical tasks such as range queries, however, the best known error bound is dependent on the domain size of private data, which is potentially prohibitive. This deficiency is inherent as LDP protects the same level of indistinguishability between any pair of private data values for each data downer. In this paper, we utilize an extension of ϵ\epsilon-LDP called Metric-LDP or EE-LDP, where a metric EE defines heterogeneous privacy guarantees for different pairs of private data values and thus provides a more flexible knob than ϵ\epsilon does to relax LDP and tune utility-privacy trade-offs. We show that, under such privacy relaxations, for analytical workloads such as linear counting, multi-dimensional range counting queries, and quantile queries, we can achieve significant gains in utility. In particular, for range queries under EE-LDP where the metric EE is the L1L^1-distance function scaled by ϵ\epsilon, we design mechanisms with errors independent on the domain sizes; instead, their errors depend on the metric EE, which specifies in what granularity the private data is protected. We believe that the primitives we design for EE-LDP will be useful in developing mechanisms for other analytical tasks, and encourage the adoption of LDP in practice

    Optimizing Batch Linear Queries under Exact and Approximate Differential Privacy

    Full text link
    Differential privacy is a promising privacy-preserving paradigm for statistical query processing over sensitive data. It works by injecting random noise into each query result, such that it is provably hard for the adversary to infer the presence or absence of any individual record from the published noisy results. The main objective in differentially private query processing is to maximize the accuracy of the query results, while satisfying the privacy guarantees. Previous work, notably \cite{LHR+10}, has suggested that with an appropriate strategy, processing a batch of correlated queries as a whole achieves considerably higher accuracy than answering them individually. However, to our knowledge there is currently no practical solution to find such a strategy for an arbitrary query batch; existing methods either return strategies of poor quality (often worse than naive methods) or require prohibitively expensive computations for even moderately large domains. Motivated by this, we propose low-rank mechanism (LRM), the first practical differentially private technique for answering batch linear queries with high accuracy. LRM works for both exact (i.e., ϵ\epsilon-) and approximate (i.e., (ϵ\epsilon, δ\delta)-) differential privacy definitions. We derive the utility guarantees of LRM, and provide guidance on how to set the privacy parameters given the user's utility expectation. Extensive experiments using real data demonstrate that our proposed method consistently outperforms state-of-the-art query processing solutions under differential privacy, by large margins.Comment: ACM Transactions on Database Systems (ACM TODS). arXiv admin note: text overlap with arXiv:1212.230

    Convex Optimization for Linear Query Processing under Approximate Differential Privacy

    Full text link
    Differential privacy enables organizations to collect accurate aggregates over sensitive data with strong, rigorous guarantees on individuals' privacy. Previous work has found that under differential privacy, computing multiple correlated aggregates as a batch, using an appropriate \emph{strategy}, may yield higher accuracy than computing each of them independently. However, finding the best strategy that maximizes result accuracy is non-trivial, as it involves solving a complex constrained optimization program that appears to be non-linear and non-convex. Hence, in the past much effort has been devoted in solving this non-convex optimization program. Existing approaches include various sophisticated heuristics and expensive numerical solutions. None of them, however, guarantees to find the optimal solution of this optimization problem. This paper points out that under (ϵ\epsilon, δ\delta)-differential privacy, the optimal solution of the above constrained optimization problem in search of a suitable strategy can be found, rather surprisingly, by solving a simple and elegant convex optimization program. Then, we propose an efficient algorithm based on Newton's method, which we prove to always converge to the optimal solution with linear global convergence rate and quadratic local convergence rate. Empirical evaluations demonstrate the accuracy and efficiency of the proposed solution.Comment: to appear in ACM SIGKDD 201
    corecore