2 research outputs found

    A Data Driven Method of Feedforward Compensator Optimization for Autonomous Vehicle Control

    Full text link
    A reliable controller is critical for execution of safe and smooth maneuvers of an autonomous vehicle. The controller must be robust to external disturbances, such as road surface, weather, wind conditions, and so on. It also needs to deal with internal variations of vehicle sub-systems, including powertrain inefficiency, measurement errors, time delay, etc. These factors introduce issues in controller performance. In this paper, a feed-forward compensator is designed via a data-driven method to model and optimize the controller performance. Principal Component Analysis (PCA) is applied for extracting influential features, after which a Time Delay Neural Network is adopted to predict control errors over a future time horizon. Based on the predicted error, a feedforward compensator is then designed to improve control performance. Simulation results in different scenarios show that, with the help of with the proposed feedforward compensator, the maximum path tracking error and the steering wheel angle oscillation are improved by 44.4% and 26.7%, respectively.Comment: Published at the 30th IEEE Intelligent Vehicles Symposium, 2019. arXiv admin note: substantial text overlap with arXiv:1901.1121

    A Data Driven Method of Optimizing Feedforward Compensator for Autonomous Vehicle

    Full text link
    A reliable controller is critical and essential for the execution of safe and smooth maneuvers of an autonomous vehicle.The controller must be robust to external disturbances, such as road surface, weather, and wind conditions, and so on.It also needs to deal with the internal parametric variations of vehicle sub-systems, including power-train efficiency, measurement errors, time delay,so on.Moreover, as in most production vehicles, the low-control commands for the engine, brake, and steering systems are delivered through separate electronic control units.These aforementioned factors introduce opaque and ineffectiveness issues in controller performance.In this paper, we design a feed-forward compensate process via a data-driven method to model and further optimize the controller performance.We apply the principal component analysis to the extraction of most influential features.Subsequently,we adopt a time delay neural network and include the accuracy of the predicted error in a future time horizon.Utilizing the predicted error,we then design a feed-forward compensate process to improve the control performance.Finally,we demonstrate the effectiveness of the proposed feed-forward compensate process in simulation scenarios.Comment: This paper have been submitted to the 2019 IEEE Intelligent Vehicle Symposiu
    corecore