52 research outputs found

    A Darboux-Frame-Based Formulation of Spin-Rolling Motion of Rigid Objects with Point Contact

    Get PDF
    This paper investigates the kinematics of spin-rolling motion of rigid objects. This paper does not consider slipping but applies a Darboux frame to develop kinematics of spin-rolling motion, which occurs in a nonholonomic system. A new formulation of spin-rolling motion of the moving object is derived in terms of contravariant vectors, rolling velocity, and geometric invariants, including normal curvature, geodesic curvature, and geodesic torsion of the respective contact curve. The equation is represented with geometric invariants. It can be readily generalized to suit both arbitrary parametric surface and contact trajectory and can be differentiated to any order. Effect of the relative curvatures and torsion on spin-rolling kinematics is explicitly presented. The translation velocity of an arbitrary point on the moving object is also derived based on the Darboux frame

    Darboux-Frame-Based Parametrization for a Spin-Rolling Sphere on a Plane: A Nonlinear Transformation of Underactuated System to Fully-Actuated Model

    Full text link
    This paper presents a new kinematic model based on the Darboux frame for motion control and planning. In this work, we show that an underactuated model of a spin-rolling sphere on a plane with five states and three inputs can be transformed into a fully-actuated one by a given Darboux frame transformation. This nonlinear state transformation establishes a geometric model that is different from conventional state-space ones. First, a kinematic model of the Darboux frame at the contact point of the rolling sphere is established. Next, we propose a virtual surface that is trapped between the sphere and the contact plane. This virtual surface is used for generating arc-length-based inputs for controlling the contact trajectories on the sphere and the plane. Finally, we discuss the controllability of this new model. In the future, we will design a geometric path planning method for the proposed kinematic model.Comment: 17 pages, 7 figures, Accepted at Mechanism and Machine Theory Elsevie

    Cartan Ribbonization of Surfaces and a Topological Inspection

    Full text link
    We develop the concept of Cartan ribbons and a method by which they can be used to ribbonize any given surface in space by intrinsically flat ribbons. The geodesic curvature along the center curve on the surface agrees with the geodesic curvature of the corresponding Cartan development curve, and this makes a rolling strategy successful. Essentially, it follows from the orientational alignment of the two co-moving Darboux frames during the rolling. Using closed center curves we obtain closed approximating Cartan ribbons that contribute zero to the total curvature integral of the ribbonization. This paves the way for a particular simple topological inspection -- it is reduced to the question of how the ribbons organize their edges relative to each other. The Gauss-Bonnet theorem leads to this topological inspection of the vertices. Finally, we display two examples of ribbonizations of surfaces, namely of a torus using two ribbons, and of an ellipsoid using its closed curvature lines as center curves for the ribbons. The topological inspection of the torus ribbonization is particularly simple as it has no vertex points, giving directly the Euler characteristic 00. The ellipsoid has 44 vertices -- corresponding to the 44 umbilical points -- each of degree one and each therefore contributing one-half to the Euler characteristic

    A geometric motion planning for a spin-rolling sphere on a plane

    Get PDF
    The paper deals with motion planning for a spin-rolling sphere when the sphere follows an optimal straight path on a plane. Since the straight line constrains the sphere’s motion, controlling the sphere’s spin motion is essential to converge to a desired full configuration of the sphere. In this paper, we show a new geometric-based planning approach that is based on a full-state description of this nonlinear system. First, the problem statement of the motion planning is posed. Next, we develop a geometric controller implemented as a virtual surface by using the Darboux frame kinematics. This virtual surface generates arc-length-based inputs for controlling the trajectories of the sphere. Then, an iterative algorithm is designed to tune these inputs for the desired configurations. Finally, the feasibility of the proposed approach is verified by simulations

    Challenges and Solutions for Autonomous Robotic Mobile Manipulation for Outdoor Sample Collection

    Get PDF
    In refinery, petrochemical, and chemical plants, process technicians collect uncontaminated samples to be analyzed in the quality control laboratory all time and all weather. This traditionally manual operation not only exposes the process technicians to hazardous chemicals, but also imposes an economical burden on the management. The recent development in mobile manipulation provides an opportunity to fully automate the operation of sample collection. This paper reviewed the various challenges in sample collection in terms of navigation of the mobile platform and manipulation of the robotic arm from four aspects, namely mobile robot positioning/attitude using global navigation satellite system (GNSS), vision-based navigation and visual servoing, robotic manipulation, mobile robot path planning and control. This paper further proposed solutions to these challenges and pointed the main direction of development in mobile manipulation

    The geometry of generalized flat ribbons

    Get PDF

    Why must we work in the phase space?

    Full text link
    We are going to prove that the phase-space description is fundamental both in the classical and quantum physics. It is shown that many problems in statistical mechanics, quantum mechanics, quasi-classical theory and in the theory of integrable systems may be well-formulated only in the phase-space language.Comment: 130 page
    • …
    corecore