2,453 research outputs found

    Reconfigurable Distributed FPGA Cluster Design for Deep Learning Accelerators

    Full text link
    We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications focused on exploring distributing scheduling optimizations for Deep Learning (DL) workloads to obtain the best performance regarding latency and power efficiency. Our cluster was modular throughout the experiment, and we have implementations that consist of up to 12 Zynq-7020 chip-based boards as well as 5 UltraScale+ MPSoC FPGA boards connected through an ethernet switch, and the cluster will evaluate configurable Deep Learning Accelerator (DLA) Versatile Tensor Accelerator (VTA). This adaptable distributed architecture is distinguished by its capacity to evaluate and manage neural network workloads in numerous configurations which enables users to conduct multiple experiments tailored to their specific application needs. The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the computation graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.Comment: 4 pages of content, 1 page for references. 4 Figures, 1 table. Conference Paper (IEEE International Conference on Electro Information Technology (eit2023) at Lewis University in Romeoville, IL

    Software for Dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy

    Full text link
    Deep Neural Networks (DNNs) are known to be strong predictors, but their prediction strategies can rarely be understood. With recent advances in Explainable Artificial Intelligence, approaches are available to explore the reasoning behind those complex models' predictions. One class of approaches are post-hoc attribution methods, among which Layer-wise Relevance Propagation (LRP) shows high performance. However, the attempt at understanding a DNN's reasoning often stops at the attributions obtained for individual samples in input space, leaving the potential for deeper quantitative analyses untouched. As a manual analysis without the right tools is often unnecessarily labor intensive, we introduce three software packages targeted at scientists to explore model reasoning using attribution approaches and beyond: (1) Zennit - a highly customizable and intuitive attribution framework implementing LRP and related approaches in PyTorch, (2) CoRelAy - a framework to easily and quickly construct quantitative analysis pipelines for dataset-wide analyses of explanations, and (3) ViRelAy - a web-application to interactively explore data, attributions, and analysis results.Comment: 10 pages, 3 figure

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Full text link
    Objective: The advent of High-Performance Computing (HPC) in recent years has led to its increasing use in brain study through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a single acceleration (or homogeneous) platform to effectively address the complete array of modeling requirements. Approach: In this paper we propose and build BrainFrame, a heterogeneous acceleration platform, incorporating three distinct acceleration technologies, a Dataflow Engine, a Xeon Phi and a GP-GPU. The PyNN framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different instances of a state-of-the-art neuron model, modeling the Inferior- Olivary Nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal- network dimensions but also different network-connectivity circumstances that can drastically change application workload characteristics. Main results: The synthetic approach of three HPC technologies demonstrated that BrainFrame is better able to cope with the modeling diversity encountered. Our performance analysis shows clearly that the model directly affect performance and all three technologies are required to cope with all the model use cases.Comment: 16 pages, 18 figures, 5 table

    A RECONFIGURABLE AND EXTENSIBLE EXPLORATION PLATFORM FOR FUTURE HETEROGENEOUS SYSTEMS

    Get PDF
    Accelerator-based -or heterogeneous- computing has become increasingly important in a variety of scenarios, ranging from High-Performance Computing (HPC) to embedded systems. While most solutions use sometimes custom-made components, most of today’s systems rely on commodity highend CPUs and/or GPU devices, which deliver adequate performance while ensuring programmability, productivity, and application portability. Unfortunately, pure general-purpose hardware is affected by inherently limited power-efficiency, that is, low GFLOPS-per-Watt, now considered as a primary metric. The many-core model and architectural customization can play here a key role, as they enable unprecedented levels of power-efficiency compared to CPUs/GPUs. However, such paradigms are still immature and deeper exploration is indispensable. This dissertation investigates customizability and proposes novel solutions for heterogeneous architectures, focusing on mechanisms related to coherence and network-on-chip (NoC). First, the work presents a non-coherent scratchpad memory with a configurable bank remapping system to reduce bank conflicts. The experimental results show the benefits of both using a customizable hardware bank remapping function and non-coherent memories for some types of algorithms. Next, we demonstrate how a distributed synchronization master better suits many-cores than standard centralized solutions. This solution, inspired by the directory-based coherence mechanism, supports concurrent synchronizations without relying on memory transactions. The results collected for different NoC sizes provided indications about the area overheads incurred by our solution and demonstrated the benefits of using a dedicated hardware synchronization support. Finally, this dissertation proposes an advanced coherence subsystem, based on the sparse directory approach, with a selective coherence maintenance system which allows coherence to be deactivated for blocks that do not require it. Experimental results show that the use of a hybrid coherent and non-coherent architectural mechanism along with an extended coherence protocol can enhance performance. The above results were all collected by means of a modular and customizable heterogeneous many-core system developed to support the exploration of power-efficient high-performance computing architectures. The system is based on a NoC and a customizable GPU-like accelerator core, as well as a reconfigurable coherence subsystem, ensuring application-specific configuration capabilities. All the explored solutions were evaluated on this real heterogeneous system, which comes along with the above methodological results as part of the contribution in this dissertation. In fact, as a key benefit, the experimental platform enables users to integrate novel hardware/software solutions on a full-system scale, whereas existing platforms do not always support a comprehensive heterogeneous architecture exploration

    SOM neural network design – a new Simulink library based approach targeting FPGA implementation

    Get PDF
    The paper presents a method for FPGA implementation of Self-Organizing Map (SOM) artificial neural networks with on-chip learning algorithm. The method aims to build up a specific neural network using generic blocks designed in the MathWorks Simulink environment. The main characteristics of this original solution are: on-chip learning algorithm implementation, high reconfiguration capability and operation under real time constraints. An extended analysis has been carried out on the hardware resources used to implement the whole SOM network, as well as each individual component block

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018
    • …
    corecore