43,246 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    One-shot ultraspectral imaging with reconfigurable metasurfaces

    Full text link
    One-shot spectral imaging that can obtain spectral information from thousands of different points in space at one time has always been difficult to achieve. Its realization makes it possible to get spatial real-time dynamic spectral information, which is extremely important for both fundamental scientific research and various practical applications. In this study, a one-shot ultraspectral imaging device fitting thousands of micro-spectrometers (6336 pixels) on a chip no larger than 0.5 cm2^2, is proposed and demonstrated. Exotic light modulation is achieved by using a unique reconfigurable metasurface supercell with 158400 metasurface units, which enables 6336 micro-spectrometers with dynamic image-adaptive performances to simultaneously guarantee the density of spectral pixels and the quality of spectral reconstruction. Additionally, by constructing a new algorithm based on compressive sensing, the snapshot device can reconstruct ultraspectral imaging information (Δλ\Delta\lambda/λ\lambda~0.001) covering a broad (300-nm-wide) visible spectrum with an ultra-high center-wavelength accuracy of 0.04-nm standard deviation and spectral resolution of 0.8 nm. This scheme of reconfigurable metasurfaces makes the device can be directly extended to almost any commercial camera with different spectral bands to seamlessly switch the information between image and spectral image, and will open up a new space for the application of spectral analysis combining with image recognition and intellisense
    • …
    corecore