4 research outputs found

    The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications

    An integration framework for managing rich organisational process knowledge

    Get PDF
    The problem we have addressed in this dissertation is that of designing a pragmatic framework for integrating the synthesis and management of organisational process knowledge which is based on domain-independent AI planning and plan representations. Our solution has focused on a set of framework components which provide methods, tools and representations to accomplish this task.In the framework we address a lifecycle of this knowledge which begins with a methodological approach to acquiring information about the process domain. We show that this initial domain specification can be translated into a common constraint-based model of activity (based on the work of Tate, 1996c and 1996d) which can then be operationalised for use in an AI planner. This model of activity is ontologically underpinned and may be expressed with a flexible and extensible language based on a sorted first-order logic. The model combines perspectives covering both the space of behaviour as well as the space of decisions. Synthesised or modified processes/plans can be translated to and from the common representation in order to support knowledge sharing, visualisation and mixed-initiative interaction.This work united past and present Edinburgh research on planning and infused it with perspectives from design rationale, requirements engineering, and process knowledge sharing. The implementation has been applied to a portfolio of scenarios which include process examples from business, manufacturing, construction and military operations. An archive of this work is available at: http://www.aiai.ed.ac.uk/~oplan/cpf

    Requirement validation with enactable descriptions of use cases.

    Get PDF
    The validation of stakeholder requirements for a software system is a pivotal activity for any nontrivial software development project. Often, differences in knowledge regarding development issues, and knowledge regarding the problem domain, impede the elaboration of requirements amongst developers and stakeholders. A description technique that provides a user perspective of the system behaviour is likely to enhance shared understanding between the developers and stakeholders. The Unified Modelling Language (UML) use case is such a notation. Use cases describe the behaviour of a system (using natural language) in terms of interactions between the external users and the system. Since the standardisation of the UML by the Object Management Group in 1997, much research has been devoted to use cases. Some researchers have focussed on the provision of writing guidelines for use case specifications whereas others have focussed on the application of formal techniques. This thesis investigates the adequacy of the use case description for the specification and validation of software behaviour. In particular, the thesis argues that whereas the user-system interaction scheme underpins the essence of the use case notation, the UML specification of the use case does not provide a mechanism by which use cases can describe dependencies amongst constituent interaction steps. Clarifying these issues is crucial for validating the adequacy of the specification against stakeholder expectations. This thesis proposes a state-based approach (the Educator approach) to use case specification where constituent events are augmented with pre and post states to express both intra-use case and inter-use case dependencies. Use case events are enacted to visualise implied behaviour, thereby enhancing shared understanding among users and developers. Moreover, enaction provides an early "feel" of the behaviour that would result from the implementation of the specification. The Educator approach and the enaction of descriptions are supported by a prototype environment, the EducatorTool, developed to demonstrate the efficacy and novelty of the approach. To validate the work presented in this thesis an industrial study, involving the specification of realtime control software, is reported. The study involves the analysis of use case specifications of the subsystems prior to the application of the proposed approach, and the analysis of the specification where the approach and tool support are applied. This way, it is possible to determine the efficacy of the Educator approach within an industrial setting

    Requirement validation with enactable descriptions of use cases

    Get PDF
    The validation of stakeholder requirements for a software system is a pivotal activity for any nontrivial software development project. Often, differences in knowledge regarding development issues, and knowledge regarding the problem domain, impede the elaboration of requirements amongst developers and stakeholders. A description technique that provides a user perspective of the system behaviour is likely to enhance shared understanding between the developers and stakeholders. The Unified Modelling Language (UML) use case is such a notation. Use cases describe the behaviour of a system (using natural language) in terms of interactions between the external users and the system. Since the standardisation of the UML by the Object Management Group in 1997, much research has been devoted to use cases. Some researchers have focussed on the provision of writing guidelines for use case specifications whereas others have focussed on the application of formal techniques. This thesis investigates the adequacy of the use case description for the specification and validation of software behaviour. In particular, the thesis argues that whereas the user-system interaction scheme underpins the essence of the use case notation, the UML specification of the use case does not provide a mechanism by which use cases can describe dependencies amongst constituent interaction steps. Clarifying these issues is crucial for validating the adequacy of the specification against stakeholder expectations. This thesis proposes a state-based approach (the Educator approach) to use case specification where constituent events are augmented with pre and post states to express both intra-use case and inter-use case dependencies. Use case events are enacted to visualise implied behaviour, thereby enhancing shared understanding among users and developers. Moreover, enaction provides an early "feel" of the behaviour that would result from the implementation of the specification. The Educator approach and the enaction of descriptions are supported by a prototype environment, the EducatorTool, developed to demonstrate the efficacy and novelty of the approach. To validate the work presented in this thesis an industrial study, involving the specification of realtime control software, is reported. The study involves the analysis of use case specifications of the subsystems prior to the application of the proposed approach, and the analysis of the specification where the approach and tool support are applied. This way, it is possible to determine the efficacy of the Educator approach within an industrial setting.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore