58,367 research outputs found

    Deep Variation Prior: Joint Image Denoising and Noise Variance Estimation without Clean Data

    Full text link
    With recent deep learning based approaches showing promising results in removing noise from images, the best denoising performance has been reported in a supervised learning setup that requires a large set of paired noisy images and ground truth for training. The strong data requirement can be mitigated by unsupervised learning techniques, however, accurate modelling of images or noise variance is still crucial for high-quality solutions. The learning problem is ill-posed for unknown noise distributions. This paper investigates the tasks of image denoising and noise variance estimation in a single, joint learning framework. To address the ill-posedness of the problem, we present deep variation prior (DVP), which states that the variation of a properly learnt denoiser with respect to the change of noise satisfies some smoothness properties, as a key criterion for good denoisers. Building upon DVP, an unsupervised deep learning framework, that simultaneously learns a denoiser and estimates noise variances, is developed. Our method does not require any clean training images or an external step of noise estimation, and instead, approximates the minimum mean squared error denoisers using only a set of noisy images. With the two underlying tasks being considered in a single framework, we allow them to be optimised for each other. The experimental results show a denoising quality comparable to that of supervised learning and accurate noise variance estimates

    Sparsity Based Poisson Denoising with Dictionary Learning

    Full text link
    The problem of Poisson denoising appears in various imaging applications, such as low-light photography, medical imaging and microscopy. In cases of high SNR, several transformations exist so as to convert the Poisson noise into an additive i.i.d. Gaussian noise, for which many effective algorithms are available. However, in a low SNR regime, these transformations are significantly less accurate, and a strategy that relies directly on the true noise statistics is required. A recent work by Salmon et al. took this route, proposing a patch-based exponential image representation model based on GMM (Gaussian mixture model), leading to state-of-the-art results. In this paper, we propose to harness sparse-representation modeling to the image patches, adopting the same exponential idea. Our scheme uses a greedy pursuit with boot-strapping based stopping condition and dictionary learning within the denoising process. The reconstruction performance of the proposed scheme is competitive with leading methods in high SNR, and achieving state-of-the-art results in cases of low SNR.Comment: 13 pages, 9 figure

    Terahertz Security Image Quality Assessment by No-reference Model Observers

    Full text link
    To provide the possibility of developing objective image quality assessment (IQA) algorithms for THz security images, we constructed the THz security image database (THSID) including a total of 181 THz security images with the resolution of 127*380. The main distortion types in THz security images were first analyzed for the design of subjective evaluation criteria to acquire the mean opinion scores. Subsequently, the existing no-reference IQA algorithms, which were 5 opinion-aware approaches viz., NFERM, GMLF, DIIVINE, BRISQUE and BLIINDS2, and 8 opinion-unaware approaches viz., QAC, SISBLIM, NIQE, FISBLIM, CPBD, S3 and Fish_bb, were executed for the evaluation of the THz security image quality. The statistical results demonstrated the superiority of Fish_bb over the other testing IQA approaches for assessing the THz image quality with PLCC (SROCC) values of 0.8925 (-0.8706), and with RMSE value of 0.3993. The linear regression analysis and Bland-Altman plot further verified that the Fish__bb could substitute for the subjective IQA. Nonetheless, for the classification of THz security images, we tended to use S3 as a criterion for ranking THz security image grades because of the relatively low false positive rate in classifying bad THz image quality into acceptable category (24.69%). Interestingly, due to the specific property of THz image, the average pixel intensity gave the best performance than the above complicated IQA algorithms, with the PLCC, SROCC and RMSE of 0.9001, -0.8800 and 0.3857, respectively. This study will help the users such as researchers or security staffs to obtain the THz security images of good quality. Currently, our research group is attempting to make this research more comprehensive.Comment: 13 pages, 8 figures, 4 table
    • …
    corecore