3 research outputs found

    Stokes equations under nonlinear slip boundary conditions coupled with the heat equation : a priori error analysis

    Get PDF
    In this work, we consider the heat equation coupled with Stokes equations under threshold type boundary condition. The conditions for existence and uniqueness of the weak solution are made clear. Next we formulate the finite element problem, recall the conditions of its solvability, and study its convergence by making use of Babuska–Brezzi's conditions for mixed problems. Third we formulate an Uzawa's type iterative algorithm that separates the fluid from heat conduction, study its feasibility, and convergence. Finally the theoretical findings are validated by numerical simulations.http://wileyonlinelibrary.com/journal/numhj2021Mathematics and Applied Mathematic

    Numerical discretization of a Darcy-Forchheimer problem coupled with a singular heat equation

    Full text link
    In Lipschitz domains, we study a Darcy-Forchheimer problem coupled with a singular heat equation by a nonlinear forcing term depending on the temperature. By singular we mean that the heat source corresponds to a Dirac measure. We establish the existence of solutions for a model that allows a diffusion coefficient in the heat equation depending on the temperature. For such a model, we also propose a finite element discretization scheme and provide an a priori convergence analysis. In the case that the aforementioned diffusion coefficient is constant, we devise an a posteriori error estimator and investigate reliability and efficiency properties. We conclude by devising an adaptive loop based on the proposed error estimator and presenting numerical experiments.Comment: arXiv admin note: text overlap with arXiv:2208.1288
    corecore