7,058 research outputs found

    Opportunistic Third-Party Backhaul for Cellular Wireless Networks

    Full text link
    With high capacity air interfaces and large numbers of small cells, backhaul -- the wired connectivity to base stations -- is increasingly becoming the cost driver in cellular wireless networks. One reason for the high cost of backhaul is that capacity is often purchased on leased lines with guaranteed rates provisioned to peak loads. In this paper, we present an alternate \emph{opportunistic backhaul} model where third parties provide base stations and backhaul connections and lease out excess capacity in their networks to the cellular provider when available, presumably at significantly lower costs than guaranteed connections. We describe a scalable architecture for such deployments using open access femtocells, which are small plug-and-play base stations that operate in the carrier's spectrum but can connect directly into the third party provider's wired network. Within the proposed architecture, we present a general user association optimization algorithm that enables the cellular provider to dynamically determine which mobiles should be assigned to the third-party femtocells based on the traffic demands, interference and channel conditions and third-party access pricing. Although the optimization is non-convex, the algorithm uses a computationally efficient method for finding approximate solutions via dual decomposition. Simulations of the deployment model based on actual base station locations are presented that show that large capacity gains are achievable if adoption of third-party, open access femtocells can reach even a small fraction of the current market penetration of WiFi access points.Comment: 9 pages, 6 figure

    Design of a multiple bloom filter for distributed navigation routing

    Get PDF
    Unmanned navigation of vehicles and mobile robots can be greatly simplified by providing environmental intelligence with dispersed wireless sensors. The wireless sensors can work as active landmarks for vehicle localization and routing. However, wireless sensors are often resource scarce and require a resource-saving design. In this paper, a multiple Bloom-filter scheme is proposed to compress a global routing table for a wireless sensor. It is used as a lookup table for routing a vehicle to any destination but requires significantly less memory space and search effort. An error-expectation-based design for a multiple Bloom filter is proposed as an improvement to the conventional false-positive-rate-based design. The new design is shown to provide an equal relative error expectation for all branched paths, which ensures a better network load balance and uses less memory space. The scheme is implemented in a project for wheelchair navigation using wireless camera motes. © 2013 IEEE

    Prochlo: Strong Privacy for Analytics in the Crowd

    Full text link
    The large-scale monitoring of computer users' software activities has become commonplace, e.g., for application telemetry, error reporting, or demographic profiling. This paper describes a principled systems architecture---Encode, Shuffle, Analyze (ESA)---for performing such monitoring with high utility while also protecting user privacy. The ESA design, and its Prochlo implementation, are informed by our practical experiences with an existing, large deployment of privacy-preserving software monitoring. (cont.; see the paper
    • …
    corecore