154,926 research outputs found

    No Right to Remain Silent: Isolating Malicious Mixes

    Get PDF
    Mix networks are a key technology to achieve network anonymity and private messaging, voting and database lookups. However, simple mix network designs are vulnerable to malicious mixes, which may drop or delay packets to facilitate traffic analysis attacks. Mix networks with provable robustness address this drawback through complex and expensive proofs of correct shuffling but come at a great cost and make limiting or unrealistic systems assumptions. We present Miranda, an efficient mix-net design, which mitigates active attacks by malicious mixes. Miranda uses both the detection of corrupt mixes, as well as detection of faults related to a pair of mixes, without detection of the faulty one among the two. Each active attack -- including dropping packets -- leads to reduced connectivity for corrupt mixes and reduces their ability to attack, and, eventually, to detection of corrupt mixes. We show, through experiments, the effectiveness of Miranda, by demonstrating how malicious mixes are detected and that attacks are neutralized early

    Making Code Voting Secure against Insider Threats using Unconditionally Secure MIX Schemes and Human PSMT Protocols

    Full text link
    Code voting was introduced by Chaum as a solution for using a possibly infected-by-malware device to cast a vote in an electronic voting application. Chaum's work on code voting assumed voting codes are physically delivered to voters using the mail system, implicitly requiring to trust the mail system. This is not necessarily a valid assumption to make - especially if the mail system cannot be trusted. When conspiring with the recipient of the cast ballots, privacy is broken. It is clear to the public that when it comes to privacy, computers and "secure" communication over the Internet cannot fully be trusted. This emphasizes the importance of using: (1) Unconditional security for secure network communication. (2) Reduce reliance on untrusted computers. In this paper we explore how to remove the mail system trust assumption in code voting. We use PSMT protocols (SCN 2012) where with the help of visual aids, humans can carry out modā€‰ā€‰10\mod 10 addition correctly with a 99\% degree of accuracy. We introduce an unconditionally secure MIX based on the combinatorics of set systems. Given that end users of our proposed voting scheme construction are humans we \emph{cannot use} classical Secure Multi Party Computation protocols. Our solutions are for both single and multi-seat elections achieving: \begin{enumerate}[i)] \item An anonymous and perfectly secure communication network secure against a tt-bounded passive adversary used to deliver voting, \item The end step of the protocol can be handled by a human to evade the threat of malware. \end{enumerate} We do not focus on active adversaries
    • ā€¦
    corecore