329 research outputs found

    Mathematical optimization and signal processing techniques for cooperative wireless networks

    Get PDF
    The rapid growth of mobile users and emergence of high data rate multimedia and interactive services have resulted in a shortage of the radio spectrum. Novel solutions are therefore required for future generations of wireless networks to enhance capacity and coverage. This thesis aims at addressing this issue through the design and analysis of signal processing algorithms. In particular various resource allocation and spatial diversity techniques have been proposed within the context of wireless peer-to-peer relays and coordinated base station (BS) processing. In order to enhance coverage while providing improvement in capacity, peer-to-peer relays that share the same frequency band have been considered and various techniques for designing relay coefficients and allocating powers optimally are proposed. Both one-way and two-way amplify and forward (AF) relays have been investigated. In order to maintain fairness, a signal-to-interference plus noise ratio (SINR) balancing criterion has been adopted. In order to improve the spectrum utilization further, the relays within the context of cognitive radio network are also considered. In this case, a cognitive peer-to-peer relay network is required to achieve SINR balancing while maintaining the interference leakage to primary receiver below a certain threshold. As the spatial diversity techniques in the form of multiple-input-multipleoutput (MIMO) systems have the potential to enhance capacity significantly, the above work has been extended to peer-to-peer MIMO relay networks. Transceiver and relay beamforming design based on minimum mean-square error (MSE) criterion has been proposed. Establishing uplink downlink MSE duality, an alternating algorithm has been developed. A scenario where multiple users are served by both the BS and a MIMO relay is considered and a joint beamforming technique for the BS and the MIMO relay is proposed. With the motivation of optimising the transmission power at both the BS and the relay, an interference precoding design is presented that takes into account the knowledge of the interference caused by the relay to the users served by the BS. Recognizing joint beamformer design for multiple BSs has the ability to reduce interference in the network significantly, cooperative multi-cell beamforming design is proposed. The aim is to design multi-cell beamformers to maximize the minimum SINR of users subject to individual BS power constraints. In contrast to all works available in the literature that aimed at balancing SINR of all users in all cells to the same level, the SINRs of users in each cell is balanced and maximized at different values. This new technique takes advantage of the fact that BSs may have different available transmission powers and/or channel conditions for their users

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Distributed probabilistic-data-association-based soft reception employing base station cooperation in MIMO-aided multiuser multicell systems

    No full text
    Intercell cochannel interference (CCI) mitigation is investigated in the context of cellular systems relying on dense frequency reuse (FR). A distributed base-station (BS)-cooperation-aided soft reception scheme using the probabilistic data association (PDA) algorithm and soft combining (SC) is proposed for the uplink of multiuser multicell MIMO systems. The realistic 19-cell hexagonal cellular model relying on unity FR is considered, where both the BSs and the mobile stations (MSs) are equipped with multiple antennas. Local-cooperation-based message passing is used, instead of a global message passing chain for the sake of reducing the backhaul traffic. The PDA algorithm is employed as a low-complexity solution for producing soft information, which facilitates the employment of SC at the individual BSs to generate the final soft decision metric. Our simulations and analysis demonstrate that, despite its low additional complexity and backhaul traffic, the proposed distributed PDA-aided SC (DPDA-SC) reception scheme significantly outperforms the conventional noncooperative benchmarkers. Furthermore, since only the index of the possible discrete value of the quantized converged soft information has to be exchanged for SC in practice, the proposed DPDA-SC scheme is relatively robust to the quantization errors of the soft information exchanged. As a beneficial result, the backhaul traffic is dramatically reduced at negligible performance degradation

    Resource allocation and feedback in wireless multiuser networks

    Get PDF
    This thesis focuses on the design of algorithms for resource allocation and feedback in wireless multiuser and heterogeneous networks. In particular, three key design challenges expected to have a major impact on future wireless networks are considered: cross-layer scheduling; structured quantization codebook design for MU-MIMO networks with limited feedback; and resource allocation to provide physical layer security. The first design challenge is cross-layer scheduling, where policies are proposed for two network architectures: user scheduling in single-cell multiuser networks aided by a relay; and base station (BS) scheduling in CoMP. These scheduling policies are then analyzed to guarantee satisfaction of three performance metrics: SEP; packet delay; and packet loss probability (PLP) due to buffer overflow. The concept of the τ-achievable PLP region is also introduced to explicitly describe the tradeoff in PLP between different users. The second design challenge is structured quantization codebook design in wireless networks with limited feedback, for both MU-MIMO and CoMP. In the MU-MIMO network, two codebook constructions are proposed, which are based on structured transformations of a base codebook. In the CoMP network, a low-complexity construction is proposed to solve the problem of variable codebook dimensions due to changes in the number of coordinated BSs. The proposed construction is shown to have comparable performance with the standard approach based on a random search, while only requiring linear instead of exponential complexity. The final design challenge is resource allocation for physical layer security in MU-MIMO. To guarantee physical layer security, the achievable secrecy sum-rate is explicitly derived for the regularized channel inversion (RCI) precoder. To improve performance, power allocation and precoder design are jointly optimized using a new algorithm based on convex optimization techniques
    corecore