3,372 research outputs found

    Cooperative Caching and Transmission Design in Cluster-Centric Small Cell Networks

    Full text link
    Wireless content caching in small cell networks (SCNs) has recently been considered as an efficient way to reduce the traffic and the energy consumption of the backhaul in emerging heterogeneous cellular networks (HetNets). In this paper, we consider a cluster-centric SCN with combined design of cooperative caching and transmission policy. Small base stations (SBSs) are grouped into disjoint clusters, in which in-cluster cache space is utilized as an entity. We propose a combined caching scheme where part of the available cache space is reserved for caching the most popular content in every SBS, while the remaining is used for cooperatively caching different partitions of the less popular content in different SBSs, as a means to increase local content diversity. Depending on the availability and placement of the requested content, coordinated multipoint (CoMP) technique with either joint transmission (JT) or parallel transmission (PT) is used to deliver content to the served user. Using Poisson point process (PPP) for the SBS location distribution and a hexagonal grid model for the clusters, we provide analytical results on the successful content delivery probability of both transmission schemes for a user located at the cluster center. Our analysis shows an inherent tradeoff between transmission diversity and content diversity in our combined caching-transmission design. We also study optimal cache space assignment for two objective functions: maximization of the cache service performance and the energy efficiency. Simulation results show that the proposed scheme achieves performance gain by leveraging cache-level and signal-level cooperation and adapting to the network environment and user QoS requirements.Comment: 13 pages, 10 figures, submitted for possible journal publicatio

    Cooperative Local Caching under Heterogeneous File Preferences

    Full text link
    Local caching is an effective scheme for leveraging the memory of the mobile terminal (MT) and short range communications to save the bandwidth usage and reduce the download delay in the cellular communication system. Specifically, the MTs first cache in their local memories in off-peak hours and then exchange the requested files with each other in the vicinity during peak hours. However, prior works largely overlook MTs' heterogeneity in file preferences and their selfish behaviours. In this paper, we practically categorize the MTs into different interest groups according to the MTs' preferences. Each group of MTs aims to increase the probability of successful file discovery from the neighbouring MTs (from the same or different groups). Hence, we define the groups' utilities as the probability of successfully discovering the file in the neighbouring MTs, which should be maximized by deciding the caching strategies of different groups. By modelling MTs' mobilities as homogeneous Poisson point processes (HPPPs), we analytically characterize MTs' utilities in closed-form. We first consider the fully cooperative case where a centralizer helps all groups to make caching decisions. We formulate the problem as a weighted-sum utility maximization problem, through which the maximum utility trade-offs of different groups are characterized. Next, we study two benchmark cases under selfish caching, namely, partial and no cooperation, with and without inter-group file sharing, respectively. The optimal caching distributions for these two cases are derived. Finally, numerical examples are presented to compare the utilities under different cases and show the effectiveness of the fully cooperative local caching compared to the two benchmark cases

    Mitigating Interference in Content Delivery Networks by Spatial Signal Alignment: The Approach of Shot-Noise Ratio

    Full text link
    Multimedia content especially videos is expected to dominate data traffic in next-generation mobile networks. Caching popular content at the network edge has emerged to be a solution for low-latency content delivery. Compared with the traditional wireless communication, content delivery has a key characteristic that many signals coexisting in the air carry identical popular content. They, however, can interfere with each other at a receiver if their modulation-and-coding (MAC) schemes are adapted to individual channels following the classic approach. To address this issue, we present a novel idea of content adaptive MAC (CAMAC) where adapting MAC schemes to content ensures that all signals carry identical content are encoded using an identical MAC scheme, achieving spatial MAC alignment. Consequently, interference can be harnessed as signals, to improve the reliability of wireless delivery. In the remaining part of the paper, we focus on quantifying the gain CAMAC can bring to a content-delivery network using a stochastic-geometry model. Specifically, content helpers are distributed as a Poisson point process, each of which transmits a file from a content database based on a given popularity distribution. It is discovered that the successful content-delivery probability is closely related to the distribution of the ratio of two independent shot noise processes, named a shot-noise ratio. The distribution itself is an open mathematical problem that we tackle in this work. Using stable-distribution theory and tools from stochastic geometry, the distribution function is derived in closed form. Extending the result in the context of content-delivery networks with CAMAC yields the content-delivery probability in different closed forms. In addition, the gain in the probability due to CAMAC is shown to grow with the level of skewness in the content popularity distribution.Comment: 32 pages, to appear in IEEE Trans. on Wireless Communicatio

    Optimizing MDS Codes for Caching at the Edge

    Full text link
    In this paper we investigate the problem of optimal MDS-encoded cache placement at the wireless edge to minimize the backhaul rate in heterogeneous networks. We derive the backhaul rate performance of any caching scheme based on file splitting and MDS encoding and we formulate the optimal caching scheme as a convex optimization problem. We then thoroughly investigate the performance of this optimal scheme for an important heterogeneous network scenario. We compare it to several other caching strategies and we analyze the influence of the system parameters, such as the popularity and size of the library files and the capabilities of the small-cell base stations, on the overall performance of our optimal caching strategy. Our results show that the careful placement of MDS-encoded content in caches at the wireless edge leads to a significant decrease of the load of the network backhaul and hence to a considerable performance enhancement of the network.Comment: to appear in Globecom 201

    Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-antenna Dense Small Cell Networks

    Get PDF
    This paper studies the performance of cache-enabled dense small cell networks consisting of multi-antenna sub-6 GHz and millimeter-wave base stations. Different from the existing works which only consider a single antenna at each base station, the optimal content placement is unknown when the base stations have multiple antennas. We first derive the successful content delivery probability by accounting for the key channel features at sub-6 GHz and mmWave frequencies. The maximization of the successful content delivery probability is a challenging problem. To tackle it, we first propose a constrained cross-entropy algorithm which achieves the near-optimal solution with moderate complexity. We then develop another simple yet effective heuristic probabilistic content placement scheme, termed two-stair algorithm, which strikes a balance between caching the most popular contents and achieving content diversity. Numerical results demonstrate the superior performance of the constrained cross-entropy method and that the two-stair algorithm yields significantly better performance than only caching the most popular contents. The comparisons between the sub-6 GHz and mmWave systems reveal an interesting tradeoff between caching capacity and density for the mmWave system to achieve similar performance as the sub-6 GHz system.Comment: 14 pages; Accepted to appear in IEEE Transactions on Wireless Communication
    corecore