5,527 research outputs found

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    SEGAN: Speech Enhancement Generative Adversarial Network

    Full text link
    Current speech enhancement techniques operate on the spectral domain and/or exploit some higher-level feature. The majority of them tackle a limited number of noise conditions and rely on first-order statistics. To circumvent these issues, deep networks are being increasingly used, thanks to their ability to learn complex functions from large example sets. In this work, we propose the use of generative adversarial networks for speech enhancement. In contrast to current techniques, we operate at the waveform level, training the model end-to-end, and incorporate 28 speakers and 40 different noise conditions into the same model, such that model parameters are shared across them. We evaluate the proposed model using an independent, unseen test set with two speakers and 20 alternative noise conditions. The enhanced samples confirm the viability of the proposed model, and both objective and subjective evaluations confirm the effectiveness of it. With that, we open the exploration of generative architectures for speech enhancement, which may progressively incorporate further speech-centric design choices to improve their performance.Comment: 5 pages, 4 figures, accepted in INTERSPEECH 201
    corecore