3 research outputs found

    Human Action Recognition Using Deep Multilevel Multimodal (M2) Fusion of Depth and Inertial Sensors

    Full text link
    Multimodal fusion frameworks for Human Action Recognition (HAR) using depth and inertial sensor data have been proposed over the years. In most of the existing works, fusion is performed at a single level (feature level or decision level), missing the opportunity to fuse rich mid-level features necessary for better classification. To address this shortcoming, in this paper, we propose three novel deep multilevel multimodal fusion frameworks to capitalize on different fusion strategies at various stages and to leverage the superiority of multilevel fusion. At input, we transform the depth data into depth images called sequential front view images (SFIs) and inertial sensor data into signal images. Each input modality, depth and inertial, is further made multimodal by taking convolution with the Prewitt filter. Creating "modality within modality" enables further complementary and discriminative feature extraction through Convolutional Neural Networks (CNNs). CNNs are trained on input images of each modality to learn low-level, high-level and complex features. Learned features are extracted and fused at different stages of the proposed frameworks to combine discriminative and complementary information. These highly informative features are served as input to a multi-class Support Vector Machine (SVM). We evaluate the proposed frameworks on three publicly available multimodal HAR datasets, namely, UTD Multimodal Human Action Dataset (MHAD), Berkeley MHAD, and UTD-MHAD Kinect V2. Experimental results show the supremacy of the proposed fusion frameworks over existing methods.Comment: 10 pages, 13 figure

    Vision and Inertial Sensing Fusion for Human Action Recognition : A Review

    Full text link
    Human action recognition is used in many applications such as video surveillance, human computer interaction, assistive living, and gaming. Many papers have appeared in the literature showing that the fusion of vision and inertial sensing improves recognition accuracies compared to the situations when each sensing modality is used individually. This paper provides a survey of the papers in which vision and inertial sensing are used simultaneously within a fusion framework in order to perform human action recognition. The surveyed papers are categorized in terms of fusion approaches, features, classifiers, as well as multimodality datasets considered. Challenges as well as possible future directions are also stated for deploying the fusion of these two sensing modalities under realistic conditions.Comment: 14 pages,4 figures,2 tables. Submitted to IEEE Sensors Journa

    A Survey of Data Fusion in Smart City Applications

    Full text link
    The advancement of various research sectors such as Internet of Things (IoT), Machine Learning, Data Mining, Big Data, and Communication Technology has shed some light in transforming an urban city integrating the aforementioned techniques to a commonly known term - Smart City. With the emergence of smart city, plethora of data sources have been made available for wide variety of applications. The common technique for handling multiple data sources is data fusion, where it improves data output quality or extracts knowledge from the raw data. In order to cater evergrowing highly complicated applications, studies in smart city have to utilize data from various sources and evaluate their performance based on multiple aspects. To this end, we introduce a multi-perspectives classification of the data fusion to evaluate the smart city applications. Moreover, we applied the proposed multi-perspectives classification to evaluate selected applications in each domain of the smart city. We conclude the paper by discussing potential future direction and challenges of data fusion integration.Comment: Accepted and To be published in Elsevier Information Fusio
    corecore