32 research outputs found

    A Convolutional Neural Network Approach for Half-Pel Interpolation in Video Coding

    Full text link
    Motion compensation is a fundamental technology in video coding to remove the temporal redundancy between video frames. To further improve the coding efficiency, sub-pel motion compensation has been utilized, which requires interpolation of fractional samples. The video coding standards usually adopt fixed interpolation filters that are derived from the signal processing theory. However, as video signal is not stationary, the fixed interpolation filters may turn out less efficient. Inspired by the great success of convolutional neural network (CNN) in computer vision, we propose to design a CNN-based interpolation filter (CNNIF) for video coding. Different from previous studies, one difficulty for training CNNIF is the lack of ground-truth since the fractional samples are actually not available. Our solution for this problem is to derive the "ground-truth" of fractional samples by smoothing high-resolution images, which is verified to be effective by the conducted experiments. Compared to the fixed half-pel interpolation filter for luma in High Efficiency Video Coding (HEVC), our proposed CNNIF achieves up to 3.2% and on average 0.9% BD-rate reduction under low-delay P configuration.Comment: International Symposium on Circuits and Systems (ISCAS) 201

    Quality-Gated Convolutional LSTM for Enhancing Compressed Video

    Full text link
    The past decade has witnessed great success in applying deep learning to enhance the quality of compressed video. However, the existing approaches aim at quality enhancement on a single frame, or only using fixed neighboring frames. Thus they fail to take full advantage of the inter-frame correlation in the video. This paper proposes the Quality-Gated Convolutional Long Short-Term Memory (QG-ConvLSTM) network with bi-directional recurrent structure to fully exploit the advantageous information in a large range of frames. More importantly, due to the obvious quality fluctuation among compressed frames, higher quality frames can provide more useful information for other frames to enhance quality. Therefore, we propose learning the "forget" and "input" gates in the ConvLSTM cell from quality-related features. As such, the frames with various quality contribute to the memory in ConvLSTM with different importance, making the information of each frame reasonably and adequately used. Finally, the experiments validate the effectiveness of our QG-ConvLSTM approach in advancing the state-of-the-art quality enhancement of compressed video, and the ablation study shows that our QG-ConvLSTM approach is learnt to make a trade-off between quality and correlation when leveraging multi-frame information. The project page: https://github.com/ryangchn/QG-ConvLSTM.git.Comment: Accepted to IEEE International Conference on Multimedia and Expo (ICME) 201

    PEA265: Perceptual Assessment of Video Compression Artifacts

    Full text link
    The most widely used video encoders share a common hybrid coding framework that includes block-based motion estimation/compensation and block-based transform coding. Despite their high coding efficiency, the encoded videos often exhibit visually annoying artifacts, denoted as Perceivable Encoding Artifacts (PEAs), which significantly degrade the visual Qualityof- Experience (QoE) of end users. To monitor and improve visual QoE, it is crucial to develop subjective and objective measures that can identify and quantify various types of PEAs. In this work, we make the first attempt to build a large-scale subjectlabelled database composed of H.265/HEVC compressed videos containing various PEAs. The database, namely the PEA265 database, includes 4 types of spatial PEAs (i.e. blurring, blocking, ringing and color bleeding) and 2 types of temporal PEAs (i.e. flickering and floating). Each containing at least 60,000 image or video patches with positive and negative labels. To objectively identify these PEAs, we train Convolutional Neural Networks (CNNs) using the PEA265 database. It appears that state-of-theart ResNeXt is capable of identifying each type of PEAs with high accuracy. Furthermore, we define PEA pattern and PEA intensity measures to quantify PEA levels of compressed video sequence. We believe that the PEA265 database and our findings will benefit the future development of video quality assessment methods and perceptually motivated video encoders.Comment: 10 pages,15 figures,4 table

    Enhancing VVC through CNN-based Post-Processing

    Get PDF

    Deep learning-based switchable network for in-loop filtering in high efficiency video coding

    Get PDF
    The video codecs are focusing on a smart transition in this era. A future area of research that has not yet been fully investigated is the effect of deep learning on video compression. The paper’s goal is to reduce the ringing and artifacts that loop filtering causes when high-efficiency video compression is used. Even though there is a lot of research being done to lessen this effect, there are still many improvements that can be made. In This paper we have focused on an intelligent solution for improvising in-loop filtering in high efficiency video coding (HEVC) using a deep convolutional neural network (CNN). The paper proposes the design and implementation of deep CNN-based loop filtering using a series of 15 CNN networks followed by a combine and squeeze network that improves feature extraction. The resultant output is free from double enhancement and the peak signal-to-noise ratio is improved by 0.5 dB compared to existing techniques. The experiments then demonstrate that improving the coding efficiency by pipelining this network to the current network and using it for higher quantization parameters (QP) is more effective than using it separately. Coding efficiency is improved by an average of 8.3% with the switching based deep CNN in-loop filtering
    corecore