40,289 research outputs found

    Algorithmic Superactivation of Asymptotic Quantum Capacity of Zero-Capacity Quantum Channels

    Full text link
    The superactivation of zero-capacity quantum channels makes it possible to use two zero-capacity quantum channels with a positive joint capacity for their output. Currently, we have no theoretical background to describe all possible combinations of superactive zero-capacity channels; hence, there may be many other possible combinations. In practice, to discover such superactive zero-capacity channel-pairs, we must analyze an extremely large set of possible quantum states, channel models, and channel probabilities. There is still no extremely efficient algorithmic tool for this purpose. This paper shows an efficient algorithmical method of finding such combinations. Our method can be a very valuable tool for improving the results of fault-tolerant quantum computation and possible communication techniques over very noisy quantum channels.Comment: 35 pages, 17 figures, Journal-ref: Information Sciences (Elsevier, 2012), presented in part at Quantum Information Processing 2012 (QIP2012), v2: minor changes, v3: published version; Information Sciences, Elsevier, ISSN: 0020-0255; 201

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding
    • …
    corecore