86,569 research outputs found

    Algorithms for Constructing Overlay Networks For Live Streaming

    Full text link
    We present a polynomial time approximation algorithm for constructing an overlay multicast network for streaming live media events over the Internet. The class of overlay networks constructed by our algorithm include networks used by Akamai Technologies to deliver live media events to a global audience with high fidelity. We construct networks consisting of three stages of nodes. The nodes in the first stage are the entry points that act as sources for the live streams. Each source forwards each of its streams to one or more nodes in the second stage that are called reflectors. A reflector can split an incoming stream into multiple identical outgoing streams, which are then sent on to nodes in the third and final stage that act as sinks and are located in edge networks near end-users. As the packets in a stream travel from one stage to the next, some of them may be lost. A sink combines the packets from multiple instances of the same stream (by reordering packets and discarding duplicates) to form a single instance of the stream with minimal loss. Our primary contribution is an algorithm that constructs an overlay network that provably satisfies capacity and reliability constraints to within a constant factor of optimal, and minimizes cost to within a logarithmic factor of optimal. Further in the common case where only the transmission costs are minimized, we show that our algorithm produces a solution that has cost within a factor of 2 of optimal. We also implement our algorithm and evaluate it on realistic traces derived from Akamai's live streaming network. Our empirical results show that our algorithm can be used to efficiently construct large-scale overlay networks in practice with near-optimal cost

    Lower Bounds for Structuring Unreliable Radio Networks

    Full text link
    In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now includes unreliable links controlled by an adversary. We begin by proving that a natural geographic constraint on the network topology is required to solve these problems efficiently (i.e., in time polylogarthmic in the network size). We then prove the importance of the assumption that nodes are provided advance knowledge of their reliable neighbors (i.e, neighbors connected by reliable links). Combined, these results answer an open question by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC 2011] are optimal with respect to their dual graph model assumptions. They also provide insight into what properties of an unreliable network enable efficient local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of the International Symposium on Distributed Computing (DISC

    Approximation Algorithms for Wireless Link Scheduling with Flexible Data Rates

    Full text link
    We consider scheduling problems in wireless networks with respect to flexible data rates. That is, more or less data can be transmitted per time depending on the signal quality, which is determined by the signal-to-interference-plus-noise ratio (SINR). Each wireless link has a utility function mapping SINR values to the respective data rates. We have to decide which transmissions are performed simultaneously and (depending on the problem variant) also which transmission powers are used. In the capacity-maximization problem, one strives to maximize the overall network throughput, i.e., the summed utility of all links. For arbitrary utility functions (not necessarily continuous ones), we present an O(log n)-approximation when having n communication requests. This algorithm is built on a constant-factor approximation for the special case of the respective problem where utility functions only consist of a single step. In other words, each link has an individual threshold and we aim at maximizing the number of links whose threshold is satisfied. On the way, this improves the result in [Kesselheim, SODA 2011] by not only extending it to individual thresholds but also showing a constant approximation factor independent of assumptions on the underlying metric space or the network parameters. In addition, we consider the latency-minimization problem. Here, each link has a demand, e.g., representing an amount of data. We have to compute a schedule of shortest possible length such that for each link the demand is fulfilled, that is the overall summed utility (or data transferred) is at least as large as its demand. Based on the capacity-maximization algorithm, we show an O(log^2 n)-approximation for this problem

    Approximating max-min linear programs with local algorithms

    Full text link
    A local algorithm is a distributed algorithm where each node must operate solely based on the information that was available at system startup within a constant-size neighbourhood of the node. We study the applicability of local algorithms to max-min LPs where the objective is to maximise minkvckvxv\min_k \sum_v c_{kv} x_v subject to vaivxv1\sum_v a_{iv} x_v \le 1 for each ii and xv0x_v \ge 0 for each vv. Here ckv0c_{kv} \ge 0, aiv0a_{iv} \ge 0, and the support sets Vi={v:aiv>0}V_i = \{v : a_{iv} > 0 \}, Vk={v:ckv>0}V_k = \{v : c_{kv}>0 \}, Iv={i:aiv>0}I_v = \{i : a_{iv} > 0 \} and Kv={k:ckv>0}K_v = \{k : c_{kv} > 0 \} have bounded size. In the distributed setting, each agent vv is responsible for choosing the value of xvx_v, and the communication network is a hypergraph H\mathcal{H} where the sets VkV_k and ViV_i constitute the hyperedges. We present inapproximability results for a wide range of structural assumptions; for example, even if Vi|V_i| and Vk|V_k| are bounded by some constants larger than 2, there is no local approximation scheme. To contrast the negative results, we present a local approximation algorithm which achieves good approximation ratios if we can bound the relative growth of the vertex neighbourhoods in H\mathcal{H}.Comment: 16 pages, 2 figure

    Approximating the Held-Karp Bound for Metric TSP in Nearly Linear Time

    Full text link
    We give a nearly linear time randomized approximation scheme for the Held-Karp bound [Held and Karp, 1970] for metric TSP. Formally, given an undirected edge-weighted graph GG on mm edges and ϵ>0\epsilon > 0, the algorithm outputs in O(mlog4n/ϵ2)O(m \log^4n /\epsilon^2) time, with high probability, a (1+ϵ)(1+\epsilon)-approximation to the Held-Karp bound on the metric TSP instance induced by the shortest path metric on GG. The algorithm can also be used to output a corresponding solution to the Subtour Elimination LP. We substantially improve upon the O(m2log2(m)/ϵ2)O(m^2 \log^2(m)/\epsilon^2) running time achieved previously by Garg and Khandekar. The LP solution can be used to obtain a fast randomized (32+ϵ)\big(\frac{3}{2} + \epsilon\big)-approximation for metric TSP which improves upon the running time of previous implementations of Christofides' algorithm

    Generating Representative ISP Technologies From First-Principles

    Full text link
    Understanding and modeling the factors that underlie the growth and evolution of network topologies are basic questions that impact capacity planning, forecasting, and protocol research. Early topology generation work focused on generating network-wide connectivity maps, either at the AS-level or the router-level, typically with an eye towards reproducing abstract properties of observed topologies. But recently, advocates of an alternative "first-principles" approach question the feasibility of realizing representative topologies with simple generative models that do not explicitly incorporate real-world constraints, such as the relative costs of router configurations, into the model. Our work synthesizes these two lines by designing a topology generation mechanism that incorporates first-principles constraints. Our goal is more modest than that of constructing an Internet-wide topology: we aim to generate representative topologies for single ISPs. However, our methods also go well beyond previous work, as we annotate these topologies with representative capacity and latency information. Taking only demand for network services over a given region as input, we propose a natural cost model for building and interconnecting PoPs and formulate the resulting optimization problem faced by an ISP. We devise hill-climbing heuristics for this problem and demonstrate that the solutions we obtain are quantitatively similar to those in measured router-level ISP topologies, with respect to both topological properties and fault-tolerance
    corecore