4 research outputs found

    Precise Dynamic Consensus under Event-Triggered Communication

    Get PDF
    This work addresses the problem of dynamic consensus, which consists of estimating the dynamic average of a set of time-varying signals distributed across a communication network of multiple agents. This problem has many applications in robotics, with formation control and target tracking being some of the most prominent ones. In this work, we propose a consensus algorithm to estimate the dynamic average in a distributed fashion, where discrete sampling and event-triggered communication are adopted to reduce the communication burden. Compared to other linear methods in the state of the art, our proposal can obtain exact convergence under continuous communication even when the dynamic average signal is persistently varying. Contrary to other sliding-mode approaches, our method reduces chattering in the discrete-time setting. The proposal is based on the discretization of established exact dynamic consensus results that use high-order sliding modes. The convergence of the protocol is verified through formal analysis, based on homogeneity properties, as well as through several numerical experiments. Concretely, we numerically show that an advantageous trade-off exists between the maximum steady-state consensus error and the communication rate. As a result, our proposal can outperform other state-of-the-art approaches, even when event-triggered communication is used in our protocol

    Practical Distributed Control for VTOL UAVs to Pass a Tunnel

    Full text link
    Unmanned Aerial Vehicles (UAVs) are now becoming increasingly accessible to amateur and commercial users alike. An air traffic management (ATM) system is needed to help ensure that this newest entrant into the skies does not collide with others. In an ATM, airspace can be composed of airways, intersections and nodes. In this paper, for simplicity, distributed coordinating the motions of Vertical TakeOff and Landing (VTOL) UAVs to pass an airway is focused. This is formulated as a tunnel passing problem, which includes passing a tunnel, inter-agent collision avoidance and keeping within the tunnel. Lyapunov-like functions are designed elaborately, and formal analysis based on invariant set theorem is made to show that all UAVs can pass the tunnel without getting trapped, avoid collision and keep within the tunnel. What is more, by the proposed distributed control, a VTOL UAV can keep away from another VTOL UAV or return back to the tunnel as soon as possible, once it enters into the safety area of another or has a collision with the tunnel during it is passing the tunnel. Simulations and experiments are carried out to show the effectiveness of the proposed method and the comparison with other methods
    corecore