50,740 research outputs found

    Statistical analysis of the owl:sameAs network for aligning concepts in the linking open data cloud

    No full text
    The massively distributed publication of linked data has brought to the attention of scientific community the limitations of classic methods for achieving data integration and the opportunities of pushing the boundaries of the field by experimenting this collective enterprise that is the linking open data cloud. While reusing existing ontologies is the choice of preference, the exploitation of ontology alignments still is a required step for easing the burden of integrating heterogeneous data sets. Alignments, even between the most used vocabularies, is still poorly supported in systems nowadays whereas links between instances are the most widely used means for bridging the gap between different data sets. We provide in this paper an account of our statistical and qualitative analysis of the network of instance level equivalences in the Linking Open Data Cloud (i.e. the sameAs network) in order to automatically compute alignments at the conceptual level. Moreover, we explore the effect of ontological information when adopting classical Jaccard methods to the ontology alignment task. Automating such task will allow in fact to achieve a clearer conceptual description of the data at the cloud level, while improving the level of integration between datasets. <br/

    An experiment with ontology mapping using concept similarity

    Get PDF
    This paper describes a system for automatically mapping between concepts in different ontologies. The motivation for the research stems from the Diogene project, in which the project's own ontology covering the ICT domain is mapped to external ontologies, in order that their associated content can automatically be included in the Diogene system. An approach involving measuring the similarity of concepts is introduced, in which standard Information Retrieval indexing techniques are applied to concept descriptions. A matrix representing the similarity of concepts in two ontologies is generated, and a mapping is performed based on two parameters: the domain coverage of the ontologies, and their levels of granularity. Finally, some initial experimentation is presented which suggests that our approach meets the project's unique set of requirements

    A community based approach for managing ontology alignments

    Get PDF
    The Semantic Web is rapidly becoming a defacto distributed repository for semantically represented data, thus leveraging on the added on value of the network effect. Various ontology mapping techniques and tools have been devised to facilitate the bridging and integration of distributed data repositories. Nevertheless, ontology mapping can benefitfrom human supervision to increase accuracy of results. The spread of Web 2.0 approaches demonstrate the possibility of using collaborative techniques for reaching consensus. While a number of prototypes for collaborative ontology construction are being developed, collaborative ontology mapping is not yet well investigated. In this paper, we describe a prototype that combines off-the-shelf ontology mapping tools with social software techniques to enable users to collaborate on mapping ontologies

    Ontological theory for ontological engineering: Biomedical systems information integration

    Get PDF
    Software application ontologies have the potential to become the keystone in state-of-the-art information management techniques. It is expected that these ontologies will support the sort of reasoning power required to navigate large and complex terminologies correctly and efficiently. Yet, there is one problem in particular that continues to stand in our way. As these terminological structures increase in size and complexity, and the drive to integrate them inevitably swells, it is clear that the level of consistency required for such navigation will become correspondingly difficult to maintain. While descriptive semantic representations are certainly a necessary component to any adequate ontology-based system, so long as ontology engineers rely solely on semantic information, without a sound ontological theory informing their modeling decisions, this goal will surely remain out of reach. In this paper we describe how Language and Computing nv (L&C), along with The Institute for Formal Ontology and Medical Information Sciences (IFOMIS), are working towards developing and implementing just such a theory, combining the open software architecture of L&Cā€™s LinkSuiteTM with the philosophical rigor of IFOMISā€™s Basic Formal Ontology. In this way we aim to move beyond the more or less simple controlled vocabularies that have dominated the industry to date

    SNOMED CT standard ontology based on the ontology for general medical science

    Get PDF
    Background: Systematized Nomenclature of Medicineā€”Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is acomprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic healthdata. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but theseefforts have been hampered by the size and complexity of SCT. Method: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the termsin SCT in a way that will support quality assurance of SCT, for example, by allowing consistency checks ofdefinitions and the identification and elimination of redundancies in the SCT vocabulary. Our proposed upper-levelSCT ontology (SCTO) is based on the Ontology for General Medical Science (OGMS). Results: The SCTO is implemented in OWL 2, to support automatic inference and consistency checking. Theapproach will allow integration of SCT data with data annotated using Open Biomedical Ontologies (OBO) Foundryontologies, since the use of OGMS will ensure consistency with the Basic Formal Ontology, which is the top-levelontology of the OBO Foundry. Currently, the SCTO contains 304 classes, 28 properties, 2400 axioms, and 1555annotations. It is publicly available through the bioportal athttp://bioportal.bioontology.org/ontologies/SCTO/. Conclusion: The resulting ontology can enhance the semantics of clinical decision support systems and semanticinteroperability among distributed electronic health records. In addition, the populated ontology can be used forthe automation of mobile health applications

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping
    • ā€¦
    corecore