4,266 research outputs found

    The two-dimensional bin packing problem with variable bin sizes and costs

    Get PDF
    AbstractThe two-dimensional variable sized bin packing problem (2DVSBPP) is the problem of packing a set of rectangular items into a set of rectangular bins. The bins have different sizes and different costs, and the objective is to minimize the overall cost of bins used for packing the rectangles. We present an integer-linear formulation of the 2DVSBPP and introduce several lower bounds for the problem. By using Dantzig–Wolfe decomposition we are able to obtain lower bounds of very good quality. The LP-relaxation of the decomposed problem is solved through delayed column generation, and an exact algorithm based on branch-and-price is developed. The paper is concluded with a computational study, comparing the tightness of the various lower bounds, as well as the performance of the exact algorithm for instances with up to 100 items

    Recent Advances in Multi-dimensional Packing Problems

    Get PDF

    Bin Packing and Related Problems: General Arc-flow Formulation with Graph Compression

    Full text link
    We present an exact method, based on an arc-flow formulation with side constraints, for solving bin packing and cutting stock problems --- including multi-constraint variants --- by simply representing all the patterns in a very compact graph. Our method includes a graph compression algorithm that usually reduces the size of the underlying graph substantially without weakening the model. As opposed to our method, which provides strong models, conventional models are usually highly symmetric and provide very weak lower bounds. Our formulation is equivalent to Gilmore and Gomory's, thus providing a very strong linear relaxation. However, instead of using column-generation in an iterative process, the method constructs a graph, where paths from the source to the target node represent every valid packing pattern. The same method, without any problem-specific parameterization, was used to solve a large variety of instances from several different cutting and packing problems. In this paper, we deal with vector packing, graph coloring, bin packing, cutting stock, cardinality constrained bin packing, cutting stock with cutting knife limitation, cutting stock with binary patterns, bin packing with conflicts, and cutting stock with binary patterns and forbidden pairs. We report computational results obtained with many benchmark test data sets, all of them showing a large advantage of this formulation with respect to the traditional ones

    Defragmenting the Module Layout of a Partially Reconfigurable Device

    Full text link
    Modern generations of field-programmable gate arrays (FPGAs) allow for partial reconfiguration. In an online context, where the sequence of modules to be loaded on the FPGA is unknown beforehand, repeated insertion and deletion of modules leads to progressive fragmentation of the available space, making defragmentation an important issue. We address this problem by propose an online and an offline component for the defragmentation of the available space. We consider defragmenting the module layout on a reconfigurable device. This corresponds to solving a two-dimensional strip packing problem. Problems of this type are NP-hard in the strong sense, and previous algorithmic results are rather limited. Based on a graph-theoretic characterization of feasible packings, we develop a method that can solve two-dimensional defragmentation instances of practical size to optimality. Our approach is validated for a set of benchmark instances.Comment: 10 pages, 11 figures, 1 table, Latex, to appear in "Engineering of Reconfigurable Systems and Algorithms" as a "Distinguished Paper

    A study on exponential-size neighborhoods for the bin packing problem with conflicts

    Full text link
    We propose an iterated local search based on several classes of local and large neighborhoods for the bin packing problem with conflicts. This problem, which combines the characteristics of both bin packing and vertex coloring, arises in various application contexts such as logistics and transportation, timetabling, and resource allocation for cloud computing. We introduce O(1)O(1) evaluation procedures for classical local-search moves, polynomial variants of ejection chains and assignment neighborhoods, an adaptive set covering-based neighborhood, and finally a controlled use of 0-cost moves to further diversify the search. The overall method produces solutions of good quality on the classical benchmark instances and scales very well with an increase of problem size. Extensive computational experiments are conducted to measure the respective contribution of each proposed neighborhood. In particular, the 0-cost moves and the large neighborhood based on set covering contribute very significantly to the search. Several research perspectives are open in relation to possible hybridizations with other state-of-the-art mathematical programming heuristics for this problem.Comment: 26 pages, 8 figure
    corecore