343 research outputs found

    Cooperative Multi-Bitrate Video Caching and Transcoding in Multicarrier NOMA-Assisted Heterogeneous Virtualized MEC Networks

    Get PDF
    Cooperative video caching and transcoding in mobile edge computing (MEC) networks is a new paradigm for future wireless networks, e.g., 5G and 5G beyond, to reduce scarce and expensive backhaul resource usage by prefetching video files within radio access networks (RANs). Integration of this technique with other advent technologies, such as wireless network virtualization and multicarrier non-orthogonal multiple access (MC-NOMA), provides more flexible video delivery opportunities, which leads to enhancements both for the network's revenue and for the end-users' service experience. In this regard, we propose a two-phase RAF for a parallel cooperative joint multi-bitrate video caching and transcoding in heterogeneous virtualized MEC networks. In the cache placement phase, we propose novel proactive delivery-aware cache placement strategies (DACPSs) by jointly allocating physical and radio resources based on network stochastic information to exploit flexible delivery opportunities. Then, for the delivery phase, we propose a delivery policy based on the user requests and network channel conditions. The optimization problems corresponding to both phases aim to maximize the total revenue of network slices, i.e., virtual networks. Both problems are non-convex and suffer from high-computational complexities. For each phase, we show how the problem can be solved efficiently. We also propose a low-complexity RAF in which the complexity of the delivery algorithm is significantly reduced. A Delivery-aware cache refreshment strategy (DACRS) in the delivery phase is also proposed to tackle the dynamically changes of network stochastic information. Extensive numerical assessments demonstrate a performance improvement of up to 30% for our proposed DACPSs and DACRS over traditional approaches.Comment: 53 pages, 24 figure

    Cost-Efficient Storage for On-Demand Video Streaming on Cloud

    Full text link
    Video stream is converted to several formats to support the user's device, this conversion process is called video transcoding, which imposes high storage and powerful resources. With emerging of cloud technology, video stream companies adopted to process video on the cloud. Generally, many formats of the same video are made (pre-transcoded) and streamed to the adequate user's device. However, pre-transcoding demands huge storage space and incurs a high-cost to the video stream companies. More importantly, the pre-transcoding of video streams could be hierarchy carried out through different storage types in the cloud. To minimize the storage cost, in this paper, we propose a method to store video streams in the hierarchical storage of the cloud. Particularly, we develop a method to decide which video stream should be pre-transcoded in its suitable cloud storage to minimize the overall cost. Experimental simulation and results show the effectiveness of our approach, specifically, when the percentage of frequently accessed videos is high in repositories, the proposed approach minimizes the overall cost by up to 40 percent.Comment: International IEEE World Forum for Internet of Thing

    Multicriteria Resource Brokering in Cloud Computing for Streaming Service

    Get PDF
    By leveraging cloud computing such as Infrastructure as a Service (IaaS), the outsourcing of computing resources used to support operations, including servers, storage, and networking components, is quite beneficial for various providers of Internet application. With this increasing trend, resource allocation that both assures QoS via Service Level Agreement (SLA) and avoids overprovisioning in order to reduce cost becomes a crucial priority and challenge in the design and operation of complex service-based platforms such as streaming service. On the other hand, providers of IaaS also concern their profit performance and energy consumption while offering these virtualized resources. In this paper, considering both service-oriented and infrastructure-oriented criteria, we regard this resource allocation problem as Multicriteria Decision Making problem and propose an effective trade-off approach based on goal programming model. To validate its effectiveness, a cloud architecture for streaming application is addressed and extensive analysis is performed for related criteria. The results of numerical simulations show that the proposed approach strikes a balance between these conflicting criteria commendably and achieves high cost efficiency
    • …
    corecore