12,428 research outputs found

    Differential Privacy Techniques for Cyber Physical Systems: A Survey

    Full text link
    Modern cyber physical systems (CPSs) has widely being used in our daily lives because of development of information and communication technologies (ICT).With the provision of CPSs, the security and privacy threats associated to these systems are also increasing. Passive attacks are being used by intruders to get access to private information of CPSs. In order to make CPSs data more secure, certain privacy preservation strategies such as encryption, and k-anonymity have been presented in the past. However, with the advances in CPSs architecture, these techniques also needs certain modifications. Meanwhile, differential privacy emerged as an efficient technique to protect CPSs data privacy. In this paper, we present a comprehensive survey of differential privacy techniques for CPSs. In particular, we survey the application and implementation of differential privacy in four major applications of CPSs named as energy systems, transportation systems, healthcare and medical systems, and industrial Internet of things (IIoT). Furthermore, we present open issues, challenges, and future research direction for differential privacy techniques for CPSs. This survey can serve as basis for the development of modern differential privacy techniques to address various problems and data privacy scenarios of CPSs.Comment: 46 pages, 12 figure

    Blockchain for Future Smart Grid: A Comprehensive Survey

    Full text link
    The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.Comment: 26 pages, 13 figures, 5 table

    Security for 4G and 5G Cellular Networks: A Survey of Existing Authentication and Privacy-preserving Schemes

    Full text link
    This paper presents a comprehensive survey of existing authentication and privacy-preserving schemes for 4G and 5G cellular networks. We start by providing an overview of existing surveys that deal with 4G and 5G communications, applications, standardization, and security. Then, we give a classification of threat models in 4G and 5G cellular networks in four categories, including, attacks against privacy, attacks against integrity, attacks against availability, and attacks against authentication. We also provide a classification of countermeasures into three types of categories, including, cryptography methods, humans factors, and intrusion detection methods. The countermeasures and informal and formal security analysis techniques used by the authentication and privacy preserving schemes are summarized in form of tables. Based on the categorization of the authentication and privacy models, we classify these schemes in seven types, including, handover authentication with privacy, mutual authentication with privacy, RFID authentication with privacy, deniable authentication with privacy, authentication with mutual anonymity, authentication and key agreement with privacy, and three-factor authentication with privacy. In addition, we provide a taxonomy and comparison of authentication and privacy-preserving schemes for 4G and 5G cellular networks in form of tables. Based on the current survey, several recommendations for further research are discussed at the end of this paper.Comment: 24 pages, 14 figure

    Privacy-preserving data aggregation in resource-constrained sensor nodes in Internet of Things: A review

    Full text link
    Privacy problems are lethal and getting more attention than any other issue with the notion of the Internet of Things (IoT). Since IoT has many application areas including smart home, smart grids, smart healthcare system, smart and intelligent transportation and many more. Most of these applications are fueled by the resource-constrained sensor network, such as Smart healthcare system is powered by Wireless Body Area Network (WBAN) and Smart home and weather monitoring systems are fueled by Wireless Sensor Networks (WSN). In the mentioned application areas sensor node life is a very important aspect of these technologies as it explicitly effects the network life and performance. Data aggregation techniques are used to increase sensor node life by decreasing communication overhead. However, when the data is aggregated at intermediate nodes to reduce communication overhead, data privacy problems becomes more vulnerable. Different Privacy-Preserving Data Aggregation (PPDA) techniques have been proposed to ensure data privacy during data aggregation in resource-constrained sensor nodes. We provide a review and comparative analysis of the state of the art PPDA techniques in this paper. The comparative analysis is based on Computation Cost, Communication overhead, Privacy Level, resistance against malicious aggregator, sensor node life and energy consumption by the sensor node. We have studied the most recent techniques and provide in-depth analysis of the minute steps involved in these techniques. To the best of our knowledge, this survey is the most recent and comprehensive study of PPDA techniques.Comment: 9 page

    Assessing the Privacy Cost in Centralized Event-Based Demand Response for Microgrids

    Full text link
    Demand response (DR) programs have emerged as a potential key enabling ingredient in the context of smart grid (SG). Nevertheless, the rising concerns over privacy issues raised by customers subscribed to these programs constitute a major threat towards their effective deployment and utilization. This has driven extensive research to resolve the hindrance confronted, resulting in a number of methods being proposed for preserving customers' privacy. While these methods provide stringent privacy guarantees, only limited attention has been paid to their computational efficiency and performance quality. Under the paradigm of differential privacy, this paper initiates a systematic empirical study on quantifying the trade-off between privacy and optimality in centralized DR systems for maximizing cumulative customer utility. Aiming to elucidate the factors governing this trade-off, we analyze the cost of privacy in terms of the effect incurred on the objective value of the DR optimization problem when applying the employed privacy-preserving strategy based on Laplace mechanism. The theoretical results derived from the analysis are complemented with empirical findings, corroborated extensively by simulations on a 4-bus MG system with up to thousands of customers. By evaluating the impact of privacy, this pilot study serves DR practitioners when considering the social and economic implications of deploying privacy-preserving DR programs in practice. Moreover, it stimulates further research on exploring more efficient approaches with bounded performance guarantees for optimizing energy procurement of MGs without infringing the privacy of customers on demand side

    Achieving Differential Privacy against Non-Intrusive Load Monitoring in Smart Grid: a Fog Computing approach

    Full text link
    Fog computing, a non-trivial extension of cloud computing to the edge of the network, has great advantage in providing services with a lower latency. In smart grid, the application of fog computing can greatly facilitate the collection of consumer's fine-grained energy consumption data, which can then be used to draw the load curve and develop a plan or model for power generation. However, such data may also reveal customer's daily activities. Non-intrusive load monitoring (NILM) can monitor an electrical circuit that powers a number of appliances switching on and off independently. If an adversary analyzes the meter readings together with the data measured by an NILM device, the customer's privacy will be disclosed. In this paper, we propose an effective privacy-preserving scheme for electric load monitoring, which can guarantee differential privacy of data disclosure in smart grid. In the proposed scheme, an energy consumption behavior model based on Factorial Hidden Markov Model (FHMM) is established. In addition, noise is added to the behavior parameter, which is different from the traditional methods that usually add noise to the energy consumption data. The analysis shows that the proposed scheme can get a better trade-off between utility and privacy compared with other popular methods

    Energy and Information Management of Electric Vehicular Network: A Survey

    Full text link
    The connected vehicle paradigm empowers vehicles with the capability to communicate with neighboring vehicles and infrastructure, shifting the role of vehicles from a transportation tool to an intelligent service platform. Meanwhile, the transportation electrification pushes forward the electric vehicle (EV) commercialization to reduce the greenhouse gas emission by petroleum combustion. The unstoppable trends of connected vehicle and EVs transform the traditional vehicular system to an electric vehicular network (EVN), a clean, mobile, and safe system. However, due to the mobility and heterogeneity of the EVN, improper management of the network could result in charging overload and data congestion. Thus, energy and information management of the EVN should be carefully studied. In this paper, we provide a comprehensive survey on the deployment and management of EVN considering all three aspects of energy flow, data communication, and computation. We first introduce the management framework of EVN. Then, research works on the EV aggregator (AG) deployment are reviewed to provide energy and information infrastructure for the EVN. Based on the deployed AGs, we present the research work review on EV scheduling that includes both charging and vehicle-to-grid (V2G) scheduling. Moreover, related works on information communication and computing are surveyed under each scenario. Finally, we discuss open research issues in the EVN

    Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges

    Full text link
    The widespread popularity of smart meters enables an immense amount of fine-grained electricity consumption data to be collected. Meanwhile, the deregulation of the power industry, particularly on the delivery side, has continuously been moving forward worldwide. How to employ massive smart meter data to promote and enhance the efficiency and sustainability of the power grid is a pressing issue. To date, substantial works have been conducted on smart meter data analytics. To provide a comprehensive overview of the current research and to identify challenges for future research, this paper conducts an application-oriented review of smart meter data analytics. Following the three stages of analytics, namely, descriptive, predictive and prescriptive analytics, we identify the key application areas as load analysis, load forecasting, and load management. We also review the techniques and methodologies adopted or developed to address each application. In addition, we also discuss some research trends, such as big data issues, novel machine learning technologies, new business models, the transition of energy systems, and data privacy and security.Comment: IEEE Transactions on Smart Grid, 201

    Internet of Cloud: Security and Privacy issues

    Full text link
    The synergy between the cloud and the IoT has emerged largely due to the cloud having attributes which directly benefit the IoT and enable its continued growth. IoT adopting Cloud services has brought new security challenges. In this book chapter, we pursue two main goals: 1) to analyse the different components of Cloud computing and the IoT and 2) to present security and privacy problems that these systems face. We thoroughly investigate current security and privacy preservation solutions that exist in this area, with an eye on the Industrial Internet of Things, discuss open issues and propose future directionsComment: 27 pages, 4 figure

    When Energy Trading meets Blockchain in Electrical Power System: The State of the Art

    Full text link
    With the rapid growth of renewable energy resources, the energy trading began to shift from centralized to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted to design new energy trading schemes. However, there are many challenging issues for blockchain-based energy trading, i.e., low efficiency, high transaction cost, security & privacy issues. To tackle with the above challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified. Then, the existing energy trading schemes are studied and classified into three categories based on their main focus: energy transaction, consensus mechanism, and system optimization. And each category is presented in detail. Although existing schemes can meet the specific energy trading requirements, there are still many unsolved problems. Finally, the discussion and future directions are given
    corecore