1,852 research outputs found

    Improved Feature Distillation via Projector Ensemble

    Full text link
    In knowledge distillation, previous feature distillation methods mainly focus on the design of loss functions and the selection of the distilled layers, while the effect of the feature projector between the student and the teacher remains under-explored. In this paper, we first discuss a plausible mechanism of the projector with empirical evidence and then propose a new feature distillation method based on a projector ensemble for further performance improvement. We observe that the student network benefits from a projector even if the feature dimensions of the student and the teacher are the same. Training a student backbone without a projector can be considered as a multi-task learning process, namely achieving discriminative feature extraction for classification and feature matching between the student and the teacher for distillation at the same time. We hypothesize and empirically verify that without a projector, the student network tends to overfit the teacher's feature distributions despite having different architecture and weights initialization. This leads to degradation on the quality of the student's deep features that are eventually used in classification. Adding a projector, on the other hand, disentangles the two learning tasks and helps the student network to focus better on the main feature extraction task while still being able to utilize teacher features as a guidance through the projector. Motivated by the positive effect of the projector in feature distillation, we propose an ensemble of projectors to further improve the quality of student features. Experimental results on different datasets with a series of teacher-student pairs illustrate the effectiveness of the proposed method

    Knowledge Distillation Under Ideal Joint Classifier Assumption

    Full text link
    Knowledge distillation is a powerful technique to compress large neural networks into smaller, more efficient networks. Softmax regression representation learning is a popular approach that uses a pre-trained teacher network to guide the learning of a smaller student network. While several studies explored the effectiveness of softmax regression representation learning, the underlying mechanism that provides knowledge transfer is not well understood. This paper presents Ideal Joint Classifier Knowledge Distillation (IJCKD), a unified framework that provides a clear and comprehensive understanding of the existing knowledge distillation methods and a theoretical foundation for future research. Using mathematical techniques derived from a theory of domain adaptation, we provide a detailed analysis of the student network's error bound as a function of the teacher. Our framework enables efficient knowledge transfer between teacher and student networks and can be applied to various applications

    Understanding the Effects of Projectors in Knowledge Distillation

    Full text link
    Conventionally, during the knowledge distillation process (e.g. feature distillation), an additional projector is often required to perform feature transformation due to the dimension mismatch between the teacher and the student networks. Interestingly, we discovered that even if the student and the teacher have the same feature dimensions, adding a projector still helps to improve the distillation performance. In addition, projectors even improve logit distillation if we add them to the architecture too. Inspired by these surprising findings and the general lack of understanding of the projectors in the knowledge distillation process from existing literature, this paper investigates the implicit role that projectors play but so far have been overlooked. Our empirical study shows that the student with a projector (1) obtains a better trade-off between the training accuracy and the testing accuracy compared to the student without a projector when it has the same feature dimensions as the teacher, (2) better preserves its similarity to the teacher beyond shallow and numeric resemblance, from the view of Centered Kernel Alignment (CKA), and (3) avoids being over-confident as the teacher does at the testing phase. Motivated by the positive effects of projectors, we propose a projector ensemble-based feature distillation method to further improve distillation performance. Despite the simplicity of the proposed strategy, empirical results from the evaluation of classification tasks on benchmark datasets demonstrate the superior classification performance of our method on a broad range of teacher-student pairs and verify from the aspects of CKA and model calibration that the student's features are of improved quality with the projector ensemble design.Comment: arXiv admin note: text overlap with arXiv:2210.1527

    PURSUhInT: In Search of Informative Hint Points Based on Layer Clustering for Knowledge Distillation

    Full text link
    We propose a novel knowledge distillation methodology for compressing deep neural networks. One of the most efficient methods for knowledge distillation is hint distillation, where the student model is injected with information (hints) from several different layers of the teacher model. Although the selection of hint points can drastically alter the compression performance, there is no systematic approach for selecting them, other than brute-force hyper-parameter search. We propose a clustering based hint selection methodology, where the layers of teacher model are clustered with respect to several metrics and the cluster centers are used as the hint points. The proposed approach is validated in CIFAR-100 dataset, where ResNet-110 network was used as the teacher model. Our results show that hint points selected by our algorithm results in superior compression performance with respect to state-of-the-art knowledge distillation algorithms on the same student models and datasets
    • …
    corecore