7 research outputs found

    A compositional approach to network algorithms

    Full text link
    We present elements of a typing theory for flow networks, where “types”, “typings”, and “type inference” are formulated in terms of familiar notions from polyhedral analysis and convex optimization. Based on this typing theory, we develop an alternative approach to the design and analysis of network algorithms, which we illustrate by applying it to the max-flow problem in multiple-source, multiple-sink, capacited directed planar graphs.National Science Foundation (CCF-0820138, CNS-1135722

    A compositional approach to network algorithms

    Full text link
    We present elements of a typing theory for flow networks, where “types”, “typings”, and “type inference” are formulated in terms of familiar notions from polyhedral analysis and convex optimization. Based on this typing theory, we develop an alternative approach to the design and analysis of network algorithms, which we illustrate by applying it to the max-flow problem in multiple-source, multiple-sink, capacited directed planar graphs.National Science Foundation (CCF-0820138, CNS-1135722

    A compositional approach to the max-flow problem

    Full text link
    Although written as a friendly rejoinder to two negative reviews of a 10-page extended abstract, entitled “A Compositional Approach to Network Algorithms,” itself based on a report by the same title [3], this report is intended to be a gentler and more informal addendum to its precursor.Partially supported by NSF awards CCF-0820138 and CNS-1135722

    Shortest path and maximum flow problems in planar flow networks with additive gains and losses

    Full text link
    In contrast to traditional flow networks, in additive flow networks, to every edge e is assigned a gain factor g(e) which represents the loss or gain of the flow while using edge e. Hence, if a flow f(e) enters the edge e and f(e) is less than the designated capacity of e, then f(e) + g(e) = 0 units of flow reach the end point of e, provided e is used, i.e., provided f(e) != 0. In this report we study the maximum flow problem in additive flow networks, which we prove to be NP-hard even when the underlying graphs of additive flow networks are planar. We also investigate the shortest path problem, when to every edge e is assigned a cost value for every unit flow entering edge e, which we show to be NP-hard in the strong sense even when the additive flow networks are planar

    A theory of flow network typings and its optimization problems

    Full text link
    Many large-scale and safety critical systems can be modeled as flow networks. Traditional approaches for the analysis of flow networks are whole-system approaches in that they require prior knowledge of the entire network before an analysis is undertaken, which can quickly become intractable as the size of network increases. In this thesis we study an alternative approach to the analysis of flow networks, which is modular, incremental and order-oblivious. The formal mechanism for realizing this compositional approach is an appropriately defined theory of network typings. Typings are formalized differently depending on how networks are specified and which of their properties is being verified. We illustrate this approach by considering a particular family of flow networks, called additive flow networks. In additive flow networks, every edge is assigned a constant gain/loss factor which is activated provided a non-zero amount of flow enters that edge. We show that the analysis of additive flow networks, more specifically the max-flow problem, is NP-hard, even when the underlying graph is planar. The theory of network typings gives rise to different forms of graph decomposition problems. We focus on one problem, which we call the graph reassembling problem. Given an abstraction of a flow network as a graph G = (V,E), one possible definition of this problem is specified in two steps: (1) We cut every edge of G into two halves to obtain a collection of |V| one-vertex components, and (2) we splice the two halves of all the edges, one edge at a time, in some order that minimizes the complexity of constructing a typing for G, starting from the typings of its one-vertex components. One optimization is minimizing “maximum” edge-boundary degree of components encountered during the reassembling of G (denoted as α measure). Another is to minimize the “sum” of all edge-boundary degrees encountered during this process (denoted by β measure). Finally, we study different variations of graph reassembling (with respect to minimizing α or β) and their relation with problems such as Linear Arrangement, Routing Tree Embedding, and Tree Layout
    corecore