7,831 research outputs found

    Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice

    Full text link
    We introduce a generic scheme for accelerating gradient-based optimization methods in the sense of Nesterov. The approach, called Catalyst, builds upon the inexact accelerated proximal point algorithm for minimizing a convex objective function, and consists of approximately solving a sequence of well-chosen auxiliary problems, leading to faster convergence. One of the keys to achieve acceleration in theory and in practice is to solve these sub-problems with appropriate accuracy by using the right stopping criterion and the right warm-start strategy. We give practical guidelines to use Catalyst and present a comprehensive analysis of its global complexity. We show that Catalyst applies to a large class of algorithms, including gradient descent, block coordinate descent, incremental algorithms such as SAG, SAGA, SDCA, SVRG, MISO/Finito, and their proximal variants. For all of these methods, we establish faster rates using the Catalyst acceleration, for strongly convex and non-strongly convex objectives. We conclude with extensive experiments showing that acceleration is useful in practice, especially for ill-conditioned problems.Comment: link to publisher website: http://jmlr.org/papers/volume18/17-748/17-748.pd

    Catalyst Acceleration for Gradient-Based Non-Convex Optimization

    Get PDF
    We introduce a generic scheme to solve nonconvex optimization problems using gradient-based algorithms originally designed for minimizing convex functions. Even though these methods may originally require convexity to operate, the proposed approach allows one to use them on weakly convex objectives, which covers a large class of non-convex functions typically appearing in machine learning and signal processing. In general, the scheme is guaranteed to produce a stationary point with a worst-case efficiency typical of first-order methods, and when the objective turns out to be convex, it automatically accelerates in the sense of Nesterov and achieves near-optimal convergence rate in function values. These properties are achieved without assuming any knowledge about the convexity of the objective, by automatically adapting to the unknown weak convexity constant. We conclude the paper by showing promising experimental results obtained by applying our approach to incremental algorithms such as SVRG and SAGA for sparse matrix factorization and for learning neural networks

    Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems

    Full text link
    Recent advances in optimization theory have shown that smooth strongly convex finite sums can be minimized faster than by treating them as a black box "batch" problem. In this work we introduce a new method in this class with a theoretical convergence rate four times faster than existing methods, for sums with sufficiently many terms. This method is also amendable to a sampling without replacement scheme that in practice gives further speed-ups. We give empirical results showing state of the art performance

    On the linear convergence of the stochastic gradient method with constant step-size

    Get PDF
    The strong growth condition (SGC) is known to be a sufficient condition for linear convergence of the stochastic gradient method using a constant step-size γ\gamma (SGM-CS). In this paper, we provide a necessary condition, for the linear convergence of SGM-CS, that is weaker than SGC. Moreover, when this necessary is violated up to a additive perturbation σ\sigma, we show that both the projected stochastic gradient method using a constant step-size (PSGM-CS) and the proximal stochastic gradient method exhibit linear convergence to a noise dominated region, whose distance to the optimal solution is proportional to γσ\gamma \sigma

    Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization

    Full text link
    In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significantly reduce the cost per iteration of the latter algorithm. We establish the rate of convergence of the SBMD method along with its associated large-deviation results for solving general nonsmooth and stochastic optimization problems. We also introduce different variants of this method and establish their rate of convergence for solving strongly convex, smooth, and composite optimization problems, as well as certain nonconvex optimization problems. To the best of our knowledge, all these developments related to the SBMD methods are new in the stochastic optimization literature. Moreover, some of our results also seem to be new for block coordinate descent methods for deterministic optimization
    corecore