753 research outputs found

    Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees

    Full text link
    The tasks of extracting (top-KK) Frequent Itemsets (FI's) and Association Rules (AR's) are fundamental primitives in data mining and database applications. Exact algorithms for these problems exist and are widely used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times. High quality approximations of FI's and AR's are sufficient for most practical uses, and a number of recent works explored the application of sampling for fast discovery of approximate solutions to the problems. However, these works do not provide satisfactory performance guarantees on the quality of the approximation, due to the difficulty of bounding the probability of under- or over-sampling any one of an unknown number of frequent itemsets. In this work we circumvent this issue by applying the statistical concept of \emph{Vapnik-Chervonenkis (VC) dimension} to develop a novel technique for providing tight bounds on the sample size that guarantees approximation within user-specified parameters. Our technique applies both to absolute and to relative approximations of (top-KK) FI's and AR's. The resulting sample size is linearly dependent on the VC-dimension of a range space associated with the dataset to be mined. The main theoretical contribution of this work is a proof that the VC-dimension of this range space is upper bounded by an easy-to-compute characteristic quantity of the dataset which we call \emph{d-index}, and is the maximum integer dd such that the dataset contains at least dd transactions of length at least dd such that no one of them is a superset of or equal to another. We show that this bound is strict for a large class of datasets.Comment: 19 pages, 7 figures. A shorter version of this paper appeared in the proceedings of ECML PKDD 201

    Sum of squares lower bounds for refuting any CSP

    Full text link
    Let P:{0,1}k{0,1}P:\{0,1\}^k \to \{0,1\} be a nontrivial kk-ary predicate. Consider a random instance of the constraint satisfaction problem CSP(P)\mathrm{CSP}(P) on nn variables with Δn\Delta n constraints, each being PP applied to kk randomly chosen literals. Provided the constraint density satisfies Δ1\Delta \gg 1, such an instance is unsatisfiable with high probability. The \emph{refutation} problem is to efficiently find a proof of unsatisfiability. We show that whenever the predicate PP supports a tt-\emph{wise uniform} probability distribution on its satisfying assignments, the sum of squares (SOS) algorithm of degree d=Θ(nΔ2/(t1)logΔ)d = \Theta(\frac{n}{\Delta^{2/(t-1)} \log \Delta}) (which runs in time nO(d)n^{O(d)}) \emph{cannot} refute a random instance of CSP(P)\mathrm{CSP}(P). In particular, the polynomial-time SOS algorithm requires Ω~(n(t+1)/2)\widetilde{\Omega}(n^{(t+1)/2}) constraints to refute random instances of CSP(P)(P) when PP supports a tt-wise uniform distribution on its satisfying assignments. Together with recent work of Lee et al. [LRS15], our result also implies that \emph{any} polynomial-size semidefinite programming relaxation for refutation requires at least Ω~(n(t+1)/2)\widetilde{\Omega}(n^{(t+1)/2}) constraints. Our results (which also extend with no change to CSPs over larger alphabets) subsume all previously known lower bounds for semialgebraic refutation of random CSPs. For every constraint predicate~PP, they give a three-way hardness tradeoff between the density of constraints, the SOS degree (hence running time), and the strength of the refutation. By recent algorithmic results of Allen et al. [AOW15] and Raghavendra et al. [RRS16], this full three-way tradeoff is \emph{tight}, up to lower-order factors.Comment: 39 pages, 1 figur

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code CC', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then CC' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials

    Smoothed Analysis in Unsupervised Learning via Decoupling

    Full text link
    Smoothed analysis is a powerful paradigm in overcoming worst-case intractability in unsupervised learning and high-dimensional data analysis. While polynomial time smoothed analysis guarantees have been obtained for worst-case intractable problems like tensor decompositions and learning mixtures of Gaussians, such guarantees have been hard to obtain for several other important problems in unsupervised learning. A core technical challenge in analyzing algorithms is obtaining lower bounds on the least singular value for random matrix ensembles with dependent entries, that are given by low-degree polynomials of a few base underlying random variables. In this work, we address this challenge by obtaining high-confidence lower bounds on the least singular value of new classes of structured random matrix ensembles of the above kind. We then use these bounds to design algorithms with polynomial time smoothed analysis guarantees for the following three important problems in unsupervised learning: 1. Robust subspace recovery, when the fraction α\alpha of inliers in the d-dimensional subspace TRnT \subset \mathbb{R}^n is at least α>(d/n)\alpha > (d/n)^\ell for any constant integer >0\ell>0. This contrasts with the known worst-case intractability when α<d/n\alpha< d/n, and the previous smoothed analysis result which needed α>d/n\alpha > d/n (Hardt and Moitra, 2013). 2. Learning overcomplete hidden markov models, where the size of the state space is any polynomial in the dimension of the observations. This gives the first polynomial time guarantees for learning overcomplete HMMs in a smoothed analysis model. 3. Higher order tensor decompositions, where we generalize the so-called FOOBI algorithm of Cardoso to find order-\ell rank-one tensors in a subspace. This allows us to obtain polynomially robust decomposition algorithms for 22\ell'th order tensors with rank O(n)O(n^{\ell}).Comment: 44 page

    The power of sum-of-squares for detecting hidden structures

    Full text link
    We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time
    corecore