20 research outputs found

    A Compartmental Model for Traffic Networks and its Dynamical Behavior

    Full text link
    We propose a macroscopic traffic network flow model suitable for analysis as a dynamical system, and we qualitatively analyze equilibrium flows as well as convergence. Flows at a junction are determined by downstream supply of capacity as well as upstream demand of traffic wishing to flow through the junction. This approach is rooted in the celebrated Cell Transmission Model for freeway traffic flow. Unlike related results which rely on certain system cooperativity properties, our model generally does not possess these properties. We show that the lack of cooperativity is in fact a useful feature that allows traffic control methods, such as ramp metering, to be effective. Finally, we leverage the results of the paper to develop a linear program for optimal ramp metering

    Resilience of Traffic Networks with Partially Controlled Routing

    Full text link
    This paper investigates the use of Infrastructure-To-Vehicle (I2V) communication to generate routing suggestions for drivers in transportation systems, with the goal of optimizing a measure of overall network congestion. We define link-wise levels of trust to tolerate the non-cooperative behavior of part of the driver population, and we propose a real-time optimization mechanism that adapts to the instantaneous network conditions and to sudden changes in the levels of trust. Our framework allows us to quantify the improvement in travel time in relation to the degree at which drivers follow the routing suggestions. We then study the resilience of the system, measured as the smallest change in routing choices that results in roads reaching their maximum capacity. Interestingly, our findings suggest that fluctuations in the extent to which drivers follow the provided routing suggestions can cause failures of certain links. These results imply that the benefits of using Infrastructure-To-Vehicle communication come at the cost of new fragilities, that should be appropriately addressed in order to guarantee the reliable operation of the infrastructure.Comment: Accepted for presentation at the IEEE 2019 American Control Conferenc

    Stability and phase transitions of dynamical flow networks with finite capacities

    Get PDF
    We study deterministic continuous-time lossy dynamical flow networks with constant exogenous demands, fixed routing, and finite flow and buffer capacities. In the considered model, when the total net flow in a cell ---consisting of the difference between the total flow directed towards it minus the outflow from it--- exceeds a certain capacity constraint, then the exceeding part of it leaks out of the system. The ensuing network flow dynamics is a linear saturated system with compact state space that we analyze using tools from monotone systems and contraction theory. Specifically, we prove that there exists a set of equilibria that is globally asymptotically stable. Such equilibrium set reduces to a single globally asymptotically stable equilibrium for generic exogenous demand vectors. Moreover, we show that the critical exogenous demand vectors giving rise to non-unique equilibria correspond to phase transitions in the asymptotic behavior of the dynamical flow network.Comment: 7 pages, 4 figures, submitted at IFAC 202

    Resilience of Dynamic Routing in the Face of Recurrent and Random Sensing Faults

    Full text link
    Feedback dynamic routing is a commonly used control strategy in transportation systems. This class of control strategies relies on real-time information about the traffic state in each link. However, such information may not always be observable due to temporary sensing faults. In this article, we consider dynamic routing over two parallel routes, where the sensing on each link is subject to recurrent and random faults. The faults occur and clear according to a finite-state Markov chain. When the sensing is faulty on a link, the traffic state on that link appears to be zero to the controller. Building on the theories of Markov processes and monotone dynamical systems, we derive lower and upper bounds for the resilience score, i.e. the guaranteed throughput of the network, in the face of sensing faults by establishing stability conditions for the network. We use these results to study how a variety of key parameters affect the resilience score of the network. The main conclusions are: (i) Sensing faults can reduce throughput and destabilize a nominally stable network; (ii) A higher failure rate does not necessarily reduce throughput, and there may exist a worst rate that minimizes throughput; (iii) Higher correlation between the failure probabilities of two links leads to greater throughput; (iv) A large difference in capacity between two links can result in a drop in throughput.Comment: 17 pages, 4 figures, accepted by ACC 202

    On resilient control of dynamical flow networks

    Full text link
    Resilience has become a key aspect in the design of contemporary infrastructure networks. This comes as a result of ever-increasing loads, limited physical capacity, and fast-growing levels of interconnectedness and complexity due to the recent technological advancements. The problem has motivated a considerable amount of research within the last few years, particularly focused on the dynamical aspects of network flows, complementing more classical static network flow optimization approaches. In this tutorial paper, a class of single-commodity first-order models of dynamical flow networks is considered. A few results recently appeared in the literature and dealing with stability and robustness of dynamical flow networks are gathered and originally presented in a unified framework. In particular, (differential) stability properties of monotone dynamical flow networks are treated in some detail, and the notion of margin of resilience is introduced as a quantitative measure of their robustness. While emphasizing methodological aspects -- including structural properties, such as monotonicity, that enable tractability and scalability -- over the specific applications, connections to well-established road traffic flow models are made.Comment: accepted for publication in Annual Reviews in Control, 201

    Compositional Synthesis via a Convex Parameterization of Assume-Guarantee Contracts

    Full text link
    We develop an assume-guarantee framework for control of large scale linear (time-varying) systems from finite-time reach and avoid or infinite-time invariance specifications. The contracts describe the admissible set of states and controls for individual subsystems. A set of contracts compose correctly if mutual assumptions and guarantees match in a way that we formalize. We propose a rich parameterization of contracts such that the set of parameters that compose correctly is convex. Moreover, we design a potential function of parameters that describes the distance of contracts from a correct composition. Thus, the verification and synthesis for the aggregate system are broken to solving small convex programs for individual subsystems, where correctness is ultimately achieved in a compositional way. Illustrative examples demonstrate the scalability of our method
    corecore