8 research outputs found

    An effective, low-cost measure of semantic relatedness obtained from Wikipedia links

    Get PDF
    This paper describes a new technique for obtaining measures of semantic relatedness. Like other recent approaches, it uses Wikipedia to provide structured world knowledge about the terms of interest. Out approach is unique in that it does so using the hyperlink structure of Wikipedia rather than its category hierarchy or textual content. Evaluation with manually defined measures of semantic relatedness reveals this to be an effective compromise between the ease of computation of the former approach and the accuracy of the latter

    Evaluation of taxonomic and neural embedding methods for calculating semantic similarity

    Full text link
    Modelling semantic similarity plays a fundamental role in lexical semantic applications. A natural way of calculating semantic similarity is to access handcrafted semantic networks, but similarity prediction can also be anticipated in a distributional vector space. Similarity calculation continues to be a challenging task, even with the latest breakthroughs in deep neural language models. We first examined popular methodologies in measuring taxonomic similarity, including edge-counting that solely employs semantic relations in a taxonomy, as well as the complex methods that estimate concept specificity. We further extrapolated three weighting factors in modelling taxonomic similarity. To study the distinct mechanisms between taxonomic and distributional similarity measures, we ran head-to-head comparisons of each measure with human similarity judgements from the perspectives of word frequency, polysemy degree and similarity intensity. Our findings suggest that without fine-tuning the uniform distance, taxonomic similarity measures can depend on the shortest path length as a prime factor to predict semantic similarity; in contrast to distributional semantics, edge-counting is free from sense distribution bias in use and can measure word similarity both literally and metaphorically; the synergy of retrofitting neural embeddings with concept relations in similarity prediction may indicate a new trend to leverage knowledge bases on transfer learning. It appears that a large gap still exists on computing semantic similarity among different ranges of word frequency, polysemous degree and similarity intensity

    Similarity measures and diversity rankings for query-focused sentence extraction

    Get PDF
    Query-focused sentence extraction generally refers to an extractive approach to select a set of sentences that responds to a specific information need. It is one of the major approaches employed in multi-document summarization, focused summarization, and complex question answering. The major advantage of most extractive methods over the natural language processing (NLP) intensive methods is that they are relatively simple, theoretically sound – drawing upon several supervised and unsupervised learning techniques, and often produce equally strong empirical performance. Many research areas, including information retrieval and text mining, have recently moved toward the extractive query-focused sentence generation as its outputs have great potential to support every day‟s information seeking activities. Particularly, as more information have been created and stored online, extractive-based summarization systems may quickly utilize several ubiquitous resources, such as Google search results and social medias, to extract summaries to answer users‟ queries.This thesis explores how the performance of sentence extraction tasks can be improved to create higher quality outputs. Specifically, two major areas are investigated. First, we examine the issue of natural language variation which affects the similarity judgment of sentences. As sentences are much shorter than documents, they generally contain fewer occurring words. Moreover, the similarity notions of sentences are different than those of documents as they tend to be very specific in meanings. Thus many document-level similarity measures are likely to perform well at this level. In this work, we address these issues in two application domains. First, we present a hybrid method, utilizing both unsupervised and supervised techniques, to compute the similarity of interrogative sentences for factoid question reuse. Next, we propose a novel structural similarity measure based on sentence semantics for paraphrase identification and textual entailment recognition tasks. The empirical evaluations suggest the effectiveness of the proposed methods in improving the accuracy of sentence similarity judgments.Furthermore, we examine the effects of the proposed similarity measure in two specific sentence extraction tasks, focused summarization and complex question answering. In conjunction with the proposed similarity measure, we also explore the issues of novelty, redundancy, and diversity in sentence extraction. To that end, we present a novel approach to promote diversity of extracted sets of sentences based on the negative endorsement principle. Negative-signed edges are employed to represent a redundancy relation between sentence nodes in graphs. Then, sentences are reranked according to the long-term negative endorsements from random walk. Additionally, we propose a unified centrality ranking and diversity ranking based on the aforementioned principle. The results from a comprehensive evaluation confirm that the proposed methods perform competitively, compared to many state-of-the-art methods.Ph.D., Information Science -- Drexel University, 201

    Automated mood boards - Ontology-based semantic image retrieval

    Get PDF
    The main goal of this research is to support concept designers’ search for inspirational and meaningful images in developing mood boards. Finding the right images has become a well-known challenge as the amount of images stored and shared on the Internet and elsewhere keeps increasing steadily and rapidly. The development of image retrieval technologies, which collect, store and pre-process image information to return relevant images instantly in response to users’ needs, have achieved great progress in the last decade. However, the keyword-based content description and query processing techniques for Image Retrieval (IR) currently used have their limitations. Most of these techniques are adapted from the Information Retrieval research, and therefore provide limited capabilities to grasp and exploit conceptualisations due to their inability to handle ambiguity, synonymy, and semantic constraints. Conceptual search (i.e. searching by meaning rather than literal strings) aims to solve the limitations of the keyword-based models. Starting from this point, this thesis investigates the existing IR models, which are oriented to the exploitation of domain knowledge in support of semantic search capabilities, with a focus on the use of lexical ontologies to improve the semantic perspective. It introduces a technique for extracting semantic DNA (SDNA) from textual image annotations and constructing semantic image signatures. The semantic signatures are called semantic chromosomes; they contain semantic information related to the images. Central to the method of constructing semantic signatures is the concept disambiguation technique developed, which identifies the most relevant SDNA by measuring the semantic importance of each word/phrase in the image annotation. In addition, a conceptual model of an ontology-based system for generating visual mood boards is proposed. The proposed model, which is adapted from the Vector Space Model, exploits the use of semantic chromosomes in semantic indexing and assessing the semantic similarity of images within a collection

    Feasibility of using citations as document summaries

    Get PDF
    The purpose of this research is to establish whether it is feasible to use citations as document summaries. People are good at creating and selecting summaries and are generally the standard for evaluating computer generated summaries. Citations can be characterized as concept symbols or short summaries of the document they are citing. Similarity metrics have been used in retrieval and text summarization to determine how alike two documents are. Similarity metrics have never been compared to what human subjects think are similar between two documents. If similarity metrics reflect human judgment, then we can mechanize the selection of citations that act as short summaries of the document they are citing. The research approach was to gather rater data comparing document abstracts to citations about the same document and then to statistically compare those results to several document metrics; frequency count, similarity metric, citation location and type of citation. There were two groups of raters, subject experts and non-experts. Both groups of raters were asked to evaluate seven parameters between abstract and citations: purpose, subject matter, methods, conclusions, findings, implications, readability, andunderstandability. The rater was to identify how strongly the citation represented the content of the abstract, on a five point likert scale. Document metrics were collected for frequency count, cosine, and similarity metric between abstracts and associated citations. In addition, data was collected on the location of the citations and the type of citation. Location was identified and dummy coded for introduction, method, discussion, review of the literature and conclusion. Citations were categorized and dummy coded for whether they refuted, noted, supported, reviewed, or applied information about the cited document. The results show there is a relationship between some similarity metrics and human judgment of similarity.Ph.D., Information Studies -- Drexel University, 200
    corecore