2 research outputs found

    Implicit reconstructions of thin leaf surfaces from large, noisy point clouds

    Full text link
    Thin surfaces, such as the leaves of a plant, pose a significant challenge for implicit surface reconstruction techniques, which typically assume a closed, orientable surface. We show that by approximately interpolating a point cloud of the surface (augmented with off-surface points) and restricting the evaluation of the interpolant to a tight domain around the point cloud, we need only require an orientable surface for the reconstruction. We use polyharmonic smoothing splines to fit approximate interpolants to noisy data, and a partition of unity method with an octree-like strategy for choosing subdomains. This method enables us to interpolate an N-point dataset in O(N) operations. We present results for point clouds of capsicum and tomato plants, scanned with a handheld device. An important outcome of the work is that sufficiently smooth leaf surfaces are generated that are amenable for droplet spreading simulations

    A comparison of techniques for the reconstruction of leaf surfaces from scanned data

    No full text
    The foliage of a plant performs vital functions. As such, leaf models are required to be developed for modelling the plant architecture from a set of scattered data captured using a scanning device. The leaf model can be used for purely visual purposes or as part of a further model, such as a fluid movement model or biological process. For these reasons, an accurate mathematical representation of the surface and boundary is required. This paper compares three approaches for fitting a continuously differentiable surface through a set of scanned data points from a leaf surface, with a technique already used for reconstructing leaf surfaces. The techniques which will be considered are discrete smoothing D2-splines [R. Arcangeli, M. C. Lopez de Silanes, and J. J. Torrens, Multidimensional Minimising Splines, Springer, 2004.], the thin plate spline finite element smoother [S. Roberts, M. Hegland, and I. Altas, Approximation of a Thin Plate Spline Smoother using Continuous Piecewise Polynomial Functions, SIAM, 1 (2003), pp. 208--234] and the radial basis function Clough-Tocher method [M. Oqielat, I. Turner, and J. Belward, A hybrid Clough-Tocher method for surface fitting with application to leaf data., Appl. Math. Modelling, 33 (2009), pp. 2582-2595]. Numerical results show that discrete smoothing D2-splines produce reconstructed leaf surfaces which better represent the original physical leaf
    corecore