124,585 research outputs found

    Comparing Feature Detectors: A bias in the repeatability criteria, and how to correct it

    Full text link
    Most computer vision application rely on algorithms finding local correspondences between different images. These algorithms detect and compare stable local invariant descriptors centered at scale-invariant keypoints. Because of the importance of the problem, new keypoint detectors and descriptors are constantly being proposed, each one claiming to perform better (or to be complementary) to the preceding ones. This raises the question of a fair comparison between very diverse methods. This evaluation has been mainly based on a repeatability criterion of the keypoints under a series of image perturbations (blur, illumination, noise, rotations, homotheties, homographies, etc). In this paper, we argue that the classic repeatability criterion is biased towards algorithms producing redundant overlapped detections. To compensate this bias, we propose a variant of the repeatability rate taking into account the descriptors overlap. We apply this variant to revisit the popular benchmark by Mikolajczyk et al., on classic and new feature detectors. Experimental evidence shows that the hierarchy of these feature detectors is severely disrupted by the amended comparator.Comment: Fixed typo in affiliation

    Beyond Intra-modality: A Survey of Heterogeneous Person Re-identification

    Full text link
    An efficient and effective person re-identification (ReID) system relieves the users from painful and boring video watching and accelerates the process of video analysis. Recently, with the explosive demands of practical applications, a lot of research efforts have been dedicated to heterogeneous person re-identification (Hetero-ReID). In this paper, we provide a comprehensive review of state-of-the-art Hetero-ReID methods that address the challenge of inter-modality discrepancies. According to the application scenario, we classify the methods into four categories -- low-resolution, infrared, sketch, and text. We begin with an introduction of ReID, and make a comparison between Homogeneous ReID (Homo-ReID) and Hetero-ReID tasks. Then, we describe and compare existing datasets for performing evaluations, and survey the models that have been widely employed in Hetero-ReID. We also summarize and compare the representative approaches from two perspectives, i.e., the application scenario and the learning pipeline. We conclude by a discussion of some future research directions. Follow-up updates are avaible at: https://github.com/lightChaserX/Awesome-Hetero-reIDComment: Accepted by IJCAI 2020. Project url: https://github.com/lightChaserX/Awesome-Hetero-reI
    • …
    corecore