1,891 research outputs found

    Formal methods for resilient control

    Get PDF
    Many systems operate in uncertain, possibly adversarial environments, and their successful operation is contingent upon satisfying specific requirements, optimal performance, and ability to recover from unexpected situations. Examples are prevalent in many engineering disciplines such as transportation, robotics, energy, and biological systems. This thesis studies designing correct, resilient, and optimal controllers for discrete-time complex systems from elaborate, possibly vague, specifications. The first part of the contributions of this thesis is a framework for optimal control of non-deterministic hybrid systems from specifications described by signal temporal logic (STL), which can express a broad spectrum of interesting properties. The method is optimization-based and has several advantages over the existing techniques. When satisfying the specification is impossible, the degree of violation - characterized by STL quantitative semantics - is minimized. The computational limitations are discussed. The focus of second part is on specific types of systems and specifications for which controllers are synthesized efficiently. A class of monotone systems is introduced for which formal synthesis is scalable and almost complete. It is shown that hybrid macroscopic traffic models fall into this class. Novel techniques in modular verification and synthesis are employed for distributed optimal control, and their usefulness is shown for large-scale traffic management. Apart from monotone systems, a method is introduced for robust constrained control of networked linear systems with communication constraints. Case studies on longitudinal control of vehicular platoons are presented. The third part is about learning-based control with formal guarantees. Two approaches are studied. First, a formal perspective on adaptive control is provided in which the model is represented by a parametric transition system, and the specification is captured by an automaton. A correct-by-construction framework is developed such that the controller infers the actual parameters and plans accordingly for all possible future transitions and inferences. The second approach is based on hybrid model identification using input-output data. By assuming some limited knowledge of the range of system behaviors, theoretical performance guarantees are provided on implementing the controller designed for the identified model on the original unknown system

    On the Logic of TLA+

    Get PDF
    TLA+ is a language intended for the high-level specification of reactive, distributed, and in particular asynchronous systems. Combining the linear-time temporal logic TLA and classical set-theory, it provides an expressive specification formalism and supports assertional verification

    H_2-Optimal Decentralized Control over Posets: A State-Space Solution for State-Feedback

    Full text link
    We develop a complete state-space solution to H_2-optimal decentralized control of poset-causal systems with state-feedback. Our solution is based on the exploitation of a key separability property of the problem, that enables an efficient computation of the optimal controller by solving a small number of uncoupled standard Riccati equations. Our approach gives important insight into the structure of optimal controllers, such as controller degree bounds that depend on the structure of the poset. A novel element in our state-space characterization of the controller is a remarkable pair of transfer functions, that belong to the incidence algebra of the poset, are inverses of each other, and are intimately related to prediction of the state along the different paths on the poset. The results are illustrated by a numerical example.Comment: 39 pages, 2 figures, submitted to IEEE Transactions on Automatic Contro

    System Level Synthesis

    Get PDF
    This article surveys the System Level Synthesis framework, which presents a novel perspective on constrained robust and optimal controller synthesis for linear systems. We show how SLS shifts the controller synthesis task from the design of a controller to the design of the entire closed loop system, and highlight the benefits of this approach in terms of scalability and transparency. We emphasize two particular applications of SLS, namely large-scale distributed optimal control and robust control. In the case of distributed control, we show how SLS allows for localized controllers to be computed, extending robust and optimal control methods to large-scale systems under practical and realistic assumptions. In the case of robust control, we show how SLS allows for novel design methodologies that, for the first time, quantify the degradation in performance of a robust controller due to model uncertainty -- such transparency is key in allowing robust control methods to interact, in a principled way, with modern techniques from machine learning and statistical inference. Throughout, we emphasize practical and efficient computational solutions, and demonstrate our methods on easy to understand case studies.Comment: To appear in Annual Reviews in Contro

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    Spectral degeneracy and escape dynamics for intermittent maps with a hole

    Full text link
    We study intermittent maps from the point of view of metastability. Small neighbourhoods of an intermittent fixed point and their complements form pairs of almost-invariant sets. Treating the small neighbourhood as a hole, we first show that the absolutely continuous conditional invariant measures (ACCIMs) converge to the ACIM as the length of the small neighbourhood shrinks to zero. We then quantify how the escape dynamics from these almost-invariant sets are connected with the second eigenfunctions of Perron-Frobenius (transfer) operators when a small perturbation is applied near the intermittent fixed point. In particular, we describe precisely the scaling of the second eigenvalue with the perturbation size, provide upper and lower bounds, and demonstrate L1L^1 convergence of the positive part of the second eigenfunction to the ACIM as the perturbation goes to zero. This perturbation and associated eigenvalue scalings and convergence results are all compatible with Ulam's method and provide a formal explanation for the numerical behaviour of Ulam's method in this nonuniformly hyperbolic setting. The main results of the paper are illustrated with numerical computations.Comment: 34 page
    • …
    corecore