19,278 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    An Overview of Vertical Handoff Decision Algorithms in NGWNs and a new Scheme for Providing Optimized Performance in Heterogeneous Wireless Networks

    Get PDF
    Because the increasingly development and use of wireless networks and mobile technologies, was implemented the idea that users of mobile terminals must have access in different wireless networks simultaneously. Therefore one of the main interest points of Next Generation Wireless Networks (NGWNs), refers to the ability to support wireless network access equipment to ensure a high rate of services between different wireless networks. To solve these problems it was necessary to have decision algorithms to decide for each user of mobile terminal, which is the best network at some point, for a service or a specific application that the user needs. Therefore to make these things, different algorithms use the vertical handoff technique. Below are presented a series of algorithms based on vertical handoff technique with a classification of the different existing vertical handoff decision strategies, which tries to solve these issues of wireless network selection at a given time for a specific application of an user. Based on our synthesis on vertical handoff decision strategies given below, we build our strategy based on solutions presented below, taking the most interesting aspect of each one.Vertical Handoff, Genetic Algorithms, Fuzzy Logic, Neural Networks, AHP

    A Machine Learning based Framework for KPI Maximization in Emerging Networks using Mobility Parameters

    Full text link
    Current LTE network is faced with a plethora of Configuration and Optimization Parameters (COPs), both hard and soft, that are adjusted manually to manage the network and provide better Quality of Experience (QoE). With 5G in view, the number of these COPs are expected to reach 2000 per site, making their manual tuning for finding the optimal combination of these parameters, an impossible fleet. Alongside these thousands of COPs is the anticipated network densification in emerging networks which exacerbates the burden of the network operators in managing and optimizing the network. Hence, we propose a machine learning-based framework combined with a heuristic technique to discover the optimal combination of two pertinent COPs used in mobility, Cell Individual Offset (CIO) and Handover Margin (HOM), that maximizes a specific Key Performance Indicator (KPI) such as mean Signal to Interference and Noise Ratio (SINR) of all the connected users. The first part of the framework leverages the power of machine learning to predict the KPI of interest given several different combinations of CIO and HOM. The resulting predictions are then fed into Genetic Algorithm (GA) which searches for the best combination of the two mentioned parameters that yield the maximum mean SINR for all users. Performance of the framework is also evaluated using several machine learning techniques, with CatBoost algorithm yielding the best prediction performance. Meanwhile, GA is able to reveal the optimal parameter setting combination more efficiently and with three orders of magnitude faster convergence time in comparison to brute force approach

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    An integrated method for short-term prediction of road traffic conditions for intelligent transportation systems applications

    Get PDF
    The paper deals with the short-term prediction of road traffic conditions within Intelligent Transportation Systems applications. First, the problem of traffic modeling and the potential of different traffic monitoring technologies are discussed. Then, an integrated method for short-term traffic prediction is presented, which integrates an Artificial Neural Network predictor that forecasts future states in standard conditions, an anomaly detection module that exploits floating car data to individuate possible occurrences of anomalous traffic conditions, and a macroscopic traffic model that predicts speeds and queue progressions in case of anomalies. Results of offline applications on a primary Italian motorway are presented
    • 

    corecore