10 research outputs found

    SFO: A Toolbox for Submodular Function Optimization

    Get PDF
    In recent years, a fundamental problem structure has emerged as very useful in a variety of machine learning applications: Submodularity is an intuitive diminishing returns property, stating that adding an element to a smaller set helps more than adding it to a larger set. Similarly to convexity, submodularity allows one to efficiently find provably (near-) optimal solutions for large problems. We present SFO, a toolbox for use in MATLAB or Octave that implements algorithms for minimization and maximization of submodular functions. A tutorial script illustrates the application of submodularity to machine learning and AI problems such as feature selection, clustering, inference and optimized information gathering

    A note on the Minimum Norm Point algorithm

    Full text link
    We present a provably more efficient implementation of the Minimum Norm Point Algorithm conceived by Fujishige than the one presented in \cite{FUJI06}. The algorithm solves the minimization problem for a class of functions known as submodular. Many important functions, such as minimum cut in the graph, have the so called submodular property \cite{FUJI82}. It is known that the problem can also be efficiently solved in strongly polynomial time \cite{IWAT01}, however known theoretical bounds are far from being practical. We present an improved implementation of the algorithm, for which unfortunately no worst case bounds are know, but which performs very well in practice. With the modifications presented, the algorithm performs an order of magnitude faster for certain submodular functions

    The Role of Synthetic Geometry in Representational Measurement Theory

    Get PDF
    Geometric representations of data and the formulation of quantitative models of observed phenomena are of main interest in all kinds of empirical sciences. To support the formulation of quantitative models, {\it representational measurement theory} studies the foundations of measurement. By mathematical methods it is analysed under which conditions attributes have numerical measurements and which numerical manipulations of the measurement values are meaningful (see Krantz et al.~(1971)). In this paper, we suggest to discuss within the measurement theory approach both, the idea of geometric representations of data and the request to provide algebraic descriptions of dependencies of attributes. We show that, within such a broader paradigm of representational measurement theory, synthetic geometry can play a twofold role which enriches the theory and the possibilities of data interpretation

    Efficient Minimization of Higher Order Submodular Functions using Monotonic Boolean Functions

    Full text link
    Submodular function minimization is a key problem in a wide variety of applications in machine learning, economics, game theory, computer vision, and many others. The general solver has a complexity of O(n3log2n.E+n4logO(1)n)O(n^3 \log^2 n . E +n^4 {\log}^{O(1)} n) where EE is the time required to evaluate the function and nn is the number of variables \cite{Lee2015}. On the other hand, many computer vision and machine learning problems are defined over special subclasses of submodular functions that can be written as the sum of many submodular cost functions defined over cliques containing few variables. In such functions, the pseudo-Boolean (or polynomial) representation \cite{BorosH02} of these subclasses are of degree (or order, or clique size) kk where knk \ll n. In this work, we develop efficient algorithms for the minimization of this useful subclass of submodular functions. To do this, we define novel mapping that transform submodular functions of order kk into quadratic ones. The underlying idea is to use auxiliary variables to model the higher order terms and the transformation is found using a carefully constructed linear program. In particular, we model the auxiliary variables as monotonic Boolean functions, allowing us to obtain a compact transformation using as few auxiliary variables as possible

    Optimal Bounds on Approximation of Submodular and XOS Functions by Juntas

    Full text link
    We investigate the approximability of several classes of real-valued functions by functions of a small number of variables ({\em juntas}). Our main results are tight bounds on the number of variables required to approximate a function f:{0,1}n[0,1]f:\{0,1\}^n \rightarrow [0,1] within 2\ell_2-error ϵ\epsilon over the uniform distribution: 1. If ff is submodular, then it is ϵ\epsilon-close to a function of O(1ϵ2log1ϵ)O(\frac{1}{\epsilon^2} \log \frac{1}{\epsilon}) variables. This is an exponential improvement over previously known results. We note that Ω(1ϵ2)\Omega(\frac{1}{\epsilon^2}) variables are necessary even for linear functions. 2. If ff is fractionally subadditive (XOS) it is ϵ\epsilon-close to a function of 2O(1/ϵ2)2^{O(1/\epsilon^2)} variables. This result holds for all functions with low total 1\ell_1-influence and is a real-valued analogue of Friedgut's theorem for boolean functions. We show that 2Ω(1/ϵ)2^{\Omega(1/\epsilon)} variables are necessary even for XOS functions. As applications of these results, we provide learning algorithms over the uniform distribution. For XOS functions, we give a PAC learning algorithm that runs in time 2poly(1/ϵ)poly(n)2^{poly(1/\epsilon)} poly(n). For submodular functions we give an algorithm in the more demanding PMAC learning model (Balcan and Harvey, 2011) which requires a multiplicative 1+γ1+\gamma factor approximation with probability at least 1ϵ1-\epsilon over the target distribution. Our uniform distribution algorithm runs in time 2poly(1/(γϵ))poly(n)2^{poly(1/(\gamma\epsilon))} poly(n). This is the first algorithm in the PMAC model that over the uniform distribution can achieve a constant approximation factor arbitrarily close to 1 for all submodular functions. As follows from the lower bounds in (Feldman et al., 2013) both of these algorithms are close to optimal. We also give applications for proper learning, testing and agnostic learning with value queries of these classes.Comment: Extended abstract appears in proceedings of FOCS 201
    corecore