5,485 research outputs found

    Causal Rule Learning: Enhancing the Understanding of Heterogeneous Treatment Effect via Weighted Causal Rules

    Full text link
    Interpretability is a key concern in estimating heterogeneous treatment effects using machine learning methods, especially for healthcare applications where high-stake decisions are often made. Inspired by the Predictive, Descriptive, Relevant framework of interpretability, we propose causal rule learning which finds a refined set of causal rules characterizing potential subgroups to estimate and enhance our understanding of heterogeneous treatment effects. Causal rule learning involves three phases: rule discovery, rule selection, and rule analysis. In the rule discovery phase, we utilize a causal forest to generate a pool of causal rules with corresponding subgroup average treatment effects. The selection phase then employs a D-learning method to select a subset of these rules to deconstruct individual-level treatment effects as a linear combination of the subgroup-level effects. This helps to answer an ignored question by previous literature: what if an individual simultaneously belongs to multiple groups with different average treatment effects? The rule analysis phase outlines a detailed procedure to further analyze each rule in the subset from multiple perspectives, revealing the most promising rules for further validation. The rules themselves, their corresponding subgroup treatment effects, and their weights in the linear combination give us more insights into heterogeneous treatment effects. Simulation and real-world data analysis demonstrate the superior performance of causal rule learning on the interpretable estimation of heterogeneous treatment effect when the ground truth is complex and the sample size is sufficient

    Online Modeling and Monitoring of Dependent Processes under Resource Constraints

    Full text link
    Adaptive monitoring of a large population of dynamic processes is critical for the timely detection of abnormal events under limited resources in many healthcare and engineering systems. Examples include the risk-based disease screening and condition-based process monitoring. However, existing adaptive monitoring models either ignore the dependency among processes or overlook the uncertainty in process modeling. To design an optimal monitoring strategy that accurately monitors the processes with poor health conditions and actively collects information for uncertainty reduction, a novel online collaborative learning method is proposed in this study. The proposed method designs a collaborative learning-based upper confidence bound (CL-UCB) algorithm to optimally balance the exploitation and exploration of dependent processes under limited resources. Efficiency of the proposed method is demonstrated through theoretical analysis, simulation studies and an empirical study of adaptive cognitive monitoring in Alzheimer's disease

    A Tree-based Federated Learning Approach for Personalized Treatment Effect Estimation from Heterogeneous Data Sources

    Full text link
    Federated learning is an appealing framework for analyzing sensitive data from distributed health data networks due to its protection of data privacy. Under this framework, data partners at local sites collaboratively build an analytical model under the orchestration of a coordinating site, while keeping the data decentralized. However, existing federated learning methods mainly assume data across sites are homogeneous samples of the global population, hence failing to properly account for the extra variability across sites in estimation and inference. Drawing on a multi-hospital electronic health records network, we develop an efficient and interpretable tree-based ensemble of personalized treatment effect estimators to join results across hospital sites, while actively modeling for the heterogeneity in data sources through site partitioning. The efficiency of our method is demonstrated by a study of causal effects of oxygen saturation on hospital mortality and backed up by comprehensive numerical results

    Causal Inference under Data Restrictions

    Full text link
    This dissertation focuses on modern causal inference under uncertainty and data restrictions, with applications to neoadjuvant clinical trials, distributed data networks, and robust individualized decision making. In the first project, we propose a method under the principal stratification framework to identify and estimate the average treatment effects on a binary outcome, conditional on the counterfactual status of a post-treatment intermediate response. Under mild assumptions, the treatment effect of interest can be identified. We extend the approach to address censored outcome data. The proposed method is applied to a neoadjuvant clinical trial and its performance is evaluated via simulation studies. In the second project, we propose a tree-based model averaging approach to improve the estimation accuracy of conditional average treatment effects at a target site by leveraging models derived from other potentially heterogeneous sites, without them sharing subject-level data. The performance of this approach is demonstrated by a study of the causal effects of oxygen therapy on hospital survival rates and backed up by comprehensive simulations. In the third project, we propose a robust individualized decision learning framework with sensitive variables to improve the worst-case outcomes of individuals caused by sensitive variables that are unavailable at the time of decision. Unlike most existing work that uses mean-optimal objectives, we propose a robust learning framework by finding a newly defined quantile- or infimum-optimal decision rule. From a causal perspective, we also generalize the classic notion of (average) fairness to conditional fairness for individual subjects. The reliable performance of the proposed method is demonstrated through synthetic experiments and three real-data applications.Comment: PhD dissertation, University of Pittsburgh. The contents are mostly based on arXiv:2211.06569, arXiv:2103.06261 and arXiv:2103.04175 with extended discussion

    Deep Causal Learning for Robotic Intelligence

    Full text link
    This invited review discusses causal learning in the context of robotic intelligence. The paper introduced the psychological findings on causal learning in human cognition, then it introduced the traditional statistical solutions on causal discovery and causal inference. The paper reviewed recent deep causal learning algorithms with a focus on their architectures and the benefits of using deep nets and discussed the gap between deep causal learning and the needs of robotic intelligence

    The Role of the Mangement Sciences in Research on Personalization

    Get PDF
    We present a review of research studies that deal with personalization. We synthesize current knowledge about these areas, and identify issues that we envision will be of interest to researchers working in the management sciences. We take an interdisciplinary approach that spans the areas of economics, marketing, information technology, and operations. We present an overarching framework for personalization that allows us to identify key players in the personalization process, as well as, the key stages of personalization. The framework enables us to examine the strategic role of personalization in the interactions between a firm and other key players in the firm's value system. We review extant literature in the strategic behavior of firms, and discuss opportunities for analytical and empirical research in this regard. Next, we examine how a firm can learn a customer's preferences, which is one of the key components of the personalization process. We use a utility-based approach to formalize such preference functions, and to understand how these preference functions could be learnt based on a customer's interactions with a firm. We identify well-established techniques in management sciences that can be gainfully employed in future research on personalization.CRM, Persoanlization, Marketing, e-commerce,

    Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?

    Full text link
    After being collected for patient care, Observational Health Data (OHD) can further benefit patient well-being by sustaining the development of health informatics and medical research. Vast potential is unexploited because of the fiercely private nature of patient-related data and regulations to protect it. Generative Adversarial Networks (GANs) have recently emerged as a groundbreaking way to learn generative models that produce realistic synthetic data. They have revolutionized practices in multiple domains such as self-driving cars, fraud detection, digital twin simulations in industrial sectors, and medical imaging. The digital twin concept could readily apply to modelling and quantifying disease progression. In addition, GANs posses many capabilities relevant to common problems in healthcare: lack of data, class imbalance, rare diseases, and preserving privacy. Unlocking open access to privacy-preserving OHD could be transformative for scientific research. In the midst of COVID-19, the healthcare system is facing unprecedented challenges, many of which of are data related for the reasons stated above. Considering these facts, publications concerning GAN applied to OHD seemed to be severely lacking. To uncover the reasons for this slow adoption, we broadly reviewed the published literature on the subject. Our findings show that the properties of OHD were initially challenging for the existing GAN algorithms (unlike medical imaging, for which state-of-the-art model were directly transferable) and the evaluation synthetic data lacked clear metrics. We find more publications on the subject than expected, starting slowly in 2017, and since then at an increasing rate. The difficulties of OHD remain, and we discuss issues relating to evaluation, consistency, benchmarking, data modelling, and reproducibility.Comment: 31 pages (10 in previous version), not including references and glossary, 51 in total. Inclusion of a large number of recent publications and expansion of the discussion accordingl

    Statistical Methods for Establishing Personalized Treatment Rules in Oncology

    Get PDF
    • …
    corecore