70,112 research outputs found

    A Cloud-Based Architecture for Multimedia Conferencing Service Provisioning

    Get PDF
    Multimedia conferencing is the real-time exchange of multimedia content between multiple parties. It is the basis of several interactive multiuser applications, such as distance learning and multimedia multiplayer online games. The cloud-based provisioning of the conferencing services on which these applications rely on can have several benefits, including the easy provisioning of new applications, efficient use of resources, and elastic scalability. This paper proposes a holistic cloud-based architecture for conferencing service provisioning, which covers both the infrastructure and platform layers of the cloud. The proposed infrastructure layer offers conferencing substrates-as-a-service (e.g., dial-in signaling, video mixing, and audio mixing), instead of virtual machines or containers. The platform layer abstracts the details of the conferencing concepts and offers a high-level interface to simplify conference service provisioning for a wide range of service and application providers (experts versus non-experts). It also enables the on-the-fly scaling of the running conferences while guaranteeing the required quality of service, enables substrates composition to create new conferencing services, and eases the reuse of conferencing services in building new applications. The presented architecture is supported by a proof-of-concept prototype and performance measurements. The latter provides the analysis of resource allocation efficiency and response time, as well as the scalability of the system under suboptimal and over-provisioned conditions. It also provides recommendations for service providers regarding the best alternatives for provisioning their service

    Visualization of and Access to CloudSat Vertical Data through Google Earth

    Get PDF
    Online tools, pioneered by the Google Earth (GE), are facilitating the way in which scientists and general public interact with geospatial data in real three dimensions. However, even in Google Earth, there is no method for depicting vertical geospatial data derived from remote sensing satellites as an orbit curtain seen from above. Here, an effective solution is proposed to automatically render the vertical atmospheric data on Google Earth. The data are first processed through the Giovanni system, then, processed to be 15-second vertical data images. A generalized COLLADA model is devised based on the 15-second vertical data profile. Using the designed COLLADA models and satellite orbit coordinates, a satellite orbit model is designed and implemented in KML format to render the vertical atmospheric data in spatial and temporal ranges vividly. The whole orbit model consists of repeated model slices. The model slices, each representing 15 seconds of vertical data, are placed on the CloudSat orbit based on the size, scale, and angle with the longitude line that are precisely and separately calculated on the fly for each slice according to the CloudSat orbit coordinates. The resulting vertical scientific data can be viewed transparently or opaquely on Google Earth. Not only is the research bridged the science and data with scientists and the general public in the most popular way, but simultaneous visualization and efficient exploration of the relationships among quantitative geospatial data, e.g. comparing the vertical data profiles with MODIS and AIRS precipitation data, becomes possible
    • …
    corecore