26,710 research outputs found

    Simulating and analyzing order book data: The queue-reactive model

    Full text link
    Through the analysis of a dataset of ultra high frequency order book updates, we introduce a model which accommodates the empirical properties of the full order book together with the stylized facts of lower frequency financial data. To do so, we split the time interval of interest into periods in which a well chosen reference price, typically the mid price, remains constant. Within these periods, we view the limit order book as a Markov queuing system. Indeed, we assume that the intensities of the order flows only depend on the current state of the order book. We establish the limiting behavior of this model and estimate its parameters from market data. Then, in order to design a relevant model for the whole period of interest, we use a stochastic mechanism that allows for switches from one period of constant reference price to another. Beyond enabling to reproduce accurately the behavior of market data, we show that our framework can be very useful for practitioners, notably as a market simulator or as a tool for the transaction cost analysis of complex trading algorithms

    Realtime market microstructure analysis: online Transaction Cost Analysis

    Full text link
    Motivated by the practical challenge in monitoring the performance of a large number of algorithmic trading orders, this paper provides a methodology that leads to automatic discovery of the causes that lie behind a poor trading performance. It also gives theoretical foundations to a generic framework for real-time trading analysis. Academic literature provides different ways to formalize these algorithms and show how optimal they can be from a mean-variance, a stochastic control, an impulse control or a statistical learning viewpoint. This paper is agnostic about the way the algorithm has been built and provides a theoretical formalism to identify in real-time the market conditions that influenced its efficiency or inefficiency. For a given set of characteristics describing the market context, selected by a practitioner, we first show how a set of additional derived explanatory factors, called anomaly detectors, can be created for each market order. We then will present an online methodology to quantify how this extended set of factors, at any given time, predicts which of the orders are underperforming while calculating the predictive power of this explanatory factor set. Armed with this information, which we call influence analysis, we intend to empower the order monitoring user to take appropriate action on any affected orders by re-calibrating the trading algorithms working the order through new parameters, pausing their execution or taking over more direct trading control. Also we intend that use of this method in the post trade analysis of algorithms can be taken advantage of to automatically adjust their trading action.Comment: 33 pages, 12 figure
    corecore