2 research outputs found

    Attacking the Quantum Internet

    Full text link
    The main service provided by the coming Quantum Internet will be creating entanglement between any two quantum nodes. We discuss and classify attacks on quantum repeaters, which will serve roles similar to those of classical Internet routers. We have modeled the components for and structure of quantum repeater network nodes. With this model, we point out attack vectors, then analyze attacks in terms of confidentiality, integrity and availability. While we are reassured about the promises of quantum networks from the confidentiality point of view, integrity and availability present new vulnerabilities not present in classical networks and require care to handle properly. We observe that the requirements on the classical computing/networking elements affect the systems' overall security risks. This component-based analysis establishes a framework for further investigation of network-wide vulnerabilities.Comment: 14 pages, 5 figure

    When Entanglement meets Classical Communications: Quantum Teleportation for the Quantum Internet (Invited Paper)

    Full text link
    Quantum Teleportation is the key communication functionality of the Quantum Internet, allowing the "transmission' of qubits without either the physical transfer of the particle storing the qubit or the violation of the quantum mechanical principles. Quantum teleportation is facilitated by the action of quantum entanglement, a somewhat counter-intuitive physical phenomenon with no direct counterpart in the classical word. As a consequence, the very concept of the classical communication system model has to be redesigned to account for the peculiarities of quantum teleportation. This re-design is a crucial prerequisite for constructing any effective quantum communication protocol. The aim of this manuscript is to shed light on this key concept, with the objective of allowing the reader: i) to appreciate the fundamental differences between the transmission of classical information versus the teleportation of quantum information; ii) to understand the communications functionalities underlying quantum teleportation, and to grasp the challenges in the design and practical employment of these functionalities; iii) to acknowledge that quantum information is subject to the deleterious effects of a noise process termed as quantum decoherence. This impairment has no direct counterpart in the classical world; iv) to recognize how to contribute to the design and employment of the Quantum Internet.Comment: Invited Paper, 53 pages, 18 figures, 2 tables, double colum
    corecore