8 research outputs found

    Fractional diffusion emulates a human mobility network during a simulated disease outbreak

    Full text link
    From footpaths to flight routes, human mobility networks facilitate the spread of communicable diseases. Control and elimination efforts depend on characterizing these networks in terms of connections and flux rates of individuals between contact nodes. In some cases, transport can be parameterized with gravity-type models or approximated by a diffusive random walk. As a alternative, we have isolated intranational commercial air traffic as a case study for the utility of non-diffusive, heavy-tailed transport models. We implemented new stochastic simulations of a prototypical influenza-like infection, focusing on the dense, highly-connected United States air travel network. We show that mobility on this network can be described mainly by a power law, in agreement with previous studies. Remarkably, we find that the global evolution of an outbreak on this network is accurately reproduced by a two-parameter space-fractional diffusion equation, such that those parameters are determined by the air travel network.Comment: 26 pages, 4 figure

    On a multigrid method for tempered fractional diffusion equations

    Get PDF
    In this paper, we develop a suitable multigrid iterative solution method for the numerical solution of second-and third-order discrete schemes for the tempered fractional diffusion equation. Our discretizations will be based on tempered weighted and shifted Grünwald difference (temperedWSGD) operators in space and the Crank–Nicolson scheme in time. We will prove, and show numerically, that a classical multigrid method, based on direct coarse grid discretization and weighted Jacobi relaxation, performs highly satisfactory for this type of equation. We also employ the multigrid method to solve the second-and third-order discrete schemes for the tempered fractional Black– Scholes equation. Some numerical experiments are carried out to confirm accuracy and effectiveness of the proposed method

    A fast implicit difference scheme for solving the generalized time-space fractional diffusion equations with variable coefficients

    Get PDF
    In this paper, we first propose an unconditionally stable implicit difference scheme for solving generalized time-space fractional diffusion equations (GTSFDEs) with variable coefficients. The numerical scheme utilizes the L1L1-type formula for the generalized Caputo fractional derivative in time discretization and the second-order weighted and shifted Gr\"{u}nwald difference (WSGD) formula in spatial discretization, respectively. Theoretical results and numerical tests are conducted to verify the (2−γ)(2 - \gamma)-order and 2-order of temporal and spatial convergence with γ∈(0,1)\gamma\in(0,1) the order of Caputo fractional derivative, respectively. The fast sum-of-exponential approximation of the generalized Caputo fractional derivative and Toeplitz-like coefficient matrices are also developed to accelerate the proposed implicit difference scheme. Numerical experiments show the effectiveness of the proposed numerical scheme and its good potential for large-scale simulation of GTSFDEs.Comment: 23 pages, 10 tables, 1 figure. Make several corrections again and have been submitted to a journal at Sept. 20, 2019. Version 2: Make some necessary corrections and symbols, 13 Jan. 2020. Revised manuscript has been resubmitted to journa

    A Chebyshev PseudoSpectral Method to Solve the Space-Time Tempered Fractional Diffusion Equation

    No full text
    The tempered fractional diffusion equation is a generalization of the standard fractional diffusion equation that includes the truncation effects inherent to finite-size physical domains. As such, that equation better describes anomalous transport processes occurring in realistic complex systems. To broaden the range of applicability of tempered fractional diffusion models, efficient numerical methods are needed to solve the model equation. In this work, we have developed a pseudospectral scheme to discretize the space-time fractional diffusion equation with exponential tempering in both space and time. The model solution is expanded in both space and time in terms of Chebyshev polynomials and the discrete equations are obtained with the Galerkin method. Numerical examples are provided to highlight the convergence rate and the flexibility of this approach. The proposed Chebyshev pseudospectral method yields an exponential rate of convergence when the solution is smooth and allows a great flexibility to simultaneously handle fractional time and space derivatives with different levels of truncation. Our results confirm that non-local numerical methods are best suited to discretize fractional differential equations as they naturally take the global behavior of the solution into account
    corecore