308 research outputs found

    A survey of parameterized algorithms and the complexity of edge modification

    Get PDF
    The survey is a comprehensive overview of the developing area of parameterized algorithms for graph modification problems. It describes state of the art in kernelization, subexponential algorithms, and parameterized complexity of graph modification. The main focus is on edge modification problems, where the task is to change some adjacencies in a graph to satisfy some required properties. To facilitate further research, we list many open problems in the area.publishedVersio

    Enumerating Maximal Induced Subgraphs

    Get PDF
    Given a graph G, the maximal induced subgraphs problem asks to enumerate all maximal induced subgraphs of G that belong to a certain hereditary graph class. While its optimization version, known as the minimum vertex deletion problem in literature, has been intensively studied, enumeration algorithms were only known for a few simple graph classes, e.g., independent sets, cliques, and forests, until very recently [Conte and Uno, STOC 2019]. There is also a connected variation of this problem, where one is concerned with only those induced subgraphs that are connected. We introduce two new approaches, which enable us to develop algorithms that solve both variations for a number of important graph classes. A general technique that has been proven very powerful in enumeration algorithms is to build a solution map, i.e., a multiple digraph on all the solutions of the problem, and the key of this approach is to make the solution map strongly connected, so that a simple traversal of the solution map solves the problem. First, we introduce retaliation-free paths to certify strong connectedness of the solution map we build. Second, generalizing the idea of Cohen, Kimelfeld, and Sagiv [JCSS 2008], we introduce an apparently very restricted version of the maximal (connected) induced subgraphs problem, and show that it is equivalent to the original problem in terms of solvability in incremental polynomial time. Moreover, we give reductions between the two variations, so that it suffices to solve one of the variations for each class we study. Our work also leads to direct and simpler proofs of several important known results

    Word-representability of split graphs

    Get PDF
    Two letters x and y alternate in a word w if after deleting in w all letters but the copies of x and y we either obtain a word xyxy⋯ (of even or odd length) or a word yxyx⋯ (of even or odd length). A graph G=(V,E) is word-representable if there exists a word w over the alphabet V such that letters x and y alternate in w if and only if xy∈E. It is known that a graph is word-representable if and only if it admits a certain orientation called semi-transitive orientation. Word-representable graphs generalize several important classes of graphs such as 3 -colorable graphs, circle graphs, and comparability graphs. There is a long line of research in the literature dedicated to word-representable graphs. However, almost nothing is known on word-representability of split graphs, that is, graphs in which the vertices can be partitioned into a clique and an independent set. In this paper, we shed a light to this direction. In particular, we characterize in terms of forbidden subgraphs word-representable split graphs in which vertices in the independent set are of degree at most 2, or the size of the clique is 4. Moreover, we give necessary and sufficient conditions for an orientation of a split graph to be semi-transitive
    corecore